×

Design of thermoelastic materials using direct sensitivity and optimization methods. Reduction and thermal stresses in functionally gradient materials. (English) Zbl 0783.73043

Summary: A methodology is presented for thermoelastic material design in functionally gradient materials (FGMs) to reduce the thermoelastic thermal stresses induced under the would-be operational thermal boundary conditions. Direct sensitivity analysis and optimization techniques are employed to reach an optimal distribution of the volume fraction of the phases in the FGM. A numerical example is given to show the potential applicability of the proposed formulation.

MSC:

74P99 Optimization problems in solid mechanics
74A15 Thermodynamics in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

nlpe
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Jones, R.M., Mechanics of composite materials, (1975), McGraw-Hill New York
[2] Chawla, K.K., Composite materials, (1987), Springer Berlin
[3] Weisshaar, T.A., Aeroelastic tailoring of forward swept composite wings, J. aircraft, 18, 669-678, (1981)
[4] Librescu, A.L.; Simovich, J., A general formulation for the aeroelastic divergence of composite swept forward wing structure, J. aircraft, 25, 364-371, (1988)
[5] Sih, G.C.; Smith, G.F.; Marshal, I.H.; Wu, J.J., Composite material response, (1988), Elsevier London
[6] ()
[7] Dems, K., Sensitivity analysis in thermal problems- I: variation of material parameters within a fixed domain, J. thermal stresses, 9, 303-324, (1986)
[8] Dems, K.; Mroz, Z., Variational approach to sensitivity analysis in thermoelasticity, J. thermal stresses, 10, 283-306, (1987)
[9] Sugano, Y., An analytical solution for a plane thermal stress problem in nonhomogeneous multiply connected regions, JSME internat. J., ser. I, 33, 136-144, (1990)
[10] Boley, B.A.; Weiner, J.H., Theory of thermal stresses, (1960), Wiley New York · Zbl 0095.18407
[11] Tanaka, K., A phenomenological description on thermomechanical behavior of shape memory alloys, J. pressure vessel technol., 112, 158-163, (1990)
[12] Wakashima, K.; Tsukamoto, H.; Choi, B.H.; Wakashima, K.; Tsukamoto, H., Micromechanical approach to the thermomechanics of ceramic-metal gradient materials, (), 19-26
[13] Havner, K.S., The theory of finite plastic deformation of crystalline solids, (), 265-320 · Zbl 0513.73047
[14] Kröner, E., Statistical modelling, (), 229-291
[15] Sasaki, M.; Wang, Y.; Hirano, T.; Hirai, T., Design of sic/C functionally gradient material and its preparation by chemical vapor deposition, J. ceram. soc. jpn., int., 530-534, (1989), Ed. 97
[16] Tabata, T.; Ito, R., Effective treatment of the interpolation factor in Marquardt’s nonlinear least squares fit algorithm, Comput. J., 18, 250-251, (1975) · Zbl 0305.65037
[17] Nash, J.C.; Smith, M.W., Nonlinear parameter estimation, an integrated system in basic, (1987), Marcel Dekker New York · Zbl 0646.62002
[18] Hirano, T.; Teraki, J.; Yamada, T., On the design of functionally gradient materials, (), 5-10
[19] Oden, J.T., Finite elements on nonlinear continua, (1972), McGraw-Hill New York · Zbl 0235.73038
[20] Inoue, T.; Tanaka, K., A finite element formulation of the coupled thermoelastic-plastic problems, Mem. fac. engrg. Kyoto univ., 35, 251-261, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.