zbMATH — the first resource for mathematics

On sets nonmeasurable with respect to invariant measures. (English) Zbl 0784.28006
A. B. Harazisvili [Doklady Akad. Nauk SSSR 222, 538-540 (1975; Zbl 0328.28011)] and independently P. Erdős and R. D. Mauldin [Proc. Am. Math. Soc. 59, 321-322 (1976; Zbl 0361.28013)] proved that given a \(\sigma\)-finite invariant measure \(m\) on an uncountable group there exists a non-measurable set. The present author answers in the affirmative a question of A. Pelc [Diss. Math. 255 (1986; Zbl 0625.04009)] whether the stronger conclusion may be drawn, namely, that every set of positive measure must contain a subset non-measurable with respect to any invariant extension of the given measure \(m\).
The above result is proved in the context of a group \(G\) operating on a set \(X\) with the \(\sigma\)-finite invariant measure \(m\) defined on the set \(X\). The group \(G\) is assumed to act \(m\)-freely, i.e., the outer measure of \(\{x\in X:hx=x\}\) must be equal to zero for any element \(h\) in \(G\) except for the identity element. The author also extracts the same conclusion under two other conditions, namely: if \(L^ 1(m)\) has a dense subset of cardinality less than the cardinality of the group \(G\), or if the measure \(m\) is ergodic and non-atomic.

28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
43A05 Measures on groups and semigroups, etc.
Full Text: DOI
[1] Albert Ascherl and Jürgen Lehn, Two principles for extending probability measures, Manuscripta Math. 21 (1977), no. 1, 43 – 50. · Zbl 0368.60005 · doi:10.1007/BF01176900 · doi.org
[2] Dietrich Bierlein, Über die Fortsetzung von Wahrscheinlichkeitsfeldern, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/1963), 28 – 46 (German). , https://doi.org/10.1007/BF00531770 Dietrich Bierlein, Die Konstruktion eines Masses \?\mid\?(\?\times \?) zu vorgegebenem Marginalmass \?\mid\? mit \?(\?\(_{0}\))=1 für eine vorgegebene Menge \?\(_{0}\), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/1963), 126 – 140 (German). · Zbl 0117.12804 · doi:10.1007/BF01844415 · doi.org
[3] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. Ryszard Engelking, General topology, PWN — Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[4] Paul Erdős and R. Daniel Mauldin, The nonexistence of certain invariant measures, Proc. Amer. Math. Soc. 59 (1976), no. 2, 321 – 322. · Zbl 0361.28013
[5] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[6] A. B. Harazišvili, Certain types of invariant measures, Dokl. Akad. Nauk SSSR 222 (1975), no. 3, 538 – 540 (Russian).
[7] Andrzej Pelc, Invariant measures and ideals on discrete groups, Dissertationes Math. (Rozprawy Mat.) 255 (1986), 47. · Zbl 0625.04009
[8] C. Ryll-Nardzewski and R. Telgársky, The nonexistence of universal invariant measures, Proc. Amer. Math. Soc. 69 (1978), no. 2, 240 – 242. · Zbl 0352.28010
[9] Piotr Zakrzewski, The existence of universal invariant semiregular measures on groups, Proc. Amer. Math. Soc. 99 (1987), no. 3, 507 – 508. · Zbl 0616.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.