×

Regularized semigroups, iterated Cauchy problems and equipartition of energy. (English) Zbl 0784.34046

Among all higher order linear differential equations \(u^{(n)}(t)+ A_{n-1} u^{(n-1)}(t)+ \cdots +A_ 1 u'(t)+A_ 0 u(t)=0\) in Banach spaces, J. Sandefur [J. Math. Anal. Appl. 60, 728-742 (1977; Zbl 0358.35068)] has singled out those that can be written in the form (1) \(\prod_{k=1}^ n (D-A_ k)u(t)=0\), where \(D=d/dt\) and each \(A_ k\) is a semigroup generator. Recently, the class of regularized semigroups that extend strongly continuous semigroups has been introduced; equations have been pointed out that can be treated within this extended class but not by means of strongly continuous semigroup theory. The authors study equation (1) with each \(A_ k\) the generator of a regularized semigroup and obtain results dealing with well posedness of the initial value problem and equipartition of energy of solutions for certain equations.

MSC:

34G10 Linear differential equations in abstract spaces
47H20 Semigroups of nonlinear operators

Citations:

Zbl 0358.35068
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Arendt, W.: Resolvent positive operators. Proc. London Math. Soc.54, 321-349 (1987). · Zbl 0617.47029 · doi:10.1112/plms/s3-54.2.321
[2] Balakrishnan, A. V.: Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math.10, 419-437 (1960). · Zbl 0103.33502
[3] Baras, P., Goldstein, J. A.: The heat equation with a singular potential. Trans. Amer. Math. Soc.284, 121-139 (1984). · Zbl 0556.35063 · doi:10.1090/S0002-9947-1984-0742415-3
[4] Da Prato, G.: Semigruppi regolarizzabili. Ricerche Mat.15, 223-248 (1966). · Zbl 0195.41001
[5] Davies, E. B.: One-Parameter Semigroups. London: Academic Press. 1980. · Zbl 0457.47030
[6] Davies, E. B., Pang, M. M.: The Cauchy problem and a generalization of the Hille-Yosida theorem. Proc. London Math. Soc.55, 181-208 (1987). · Zbl 0651.47026 · doi:10.1112/plms/s3-55.1.181
[7] de Laubenfels, R.:C-semigroups and the Cauchy problem. J. Funct. Anal. (to appear). · Zbl 0945.47500
[8] de Laubenfels, R.: Integrated semigroups,C-semigroups and the abstract Cauchy problem. Semigroup Forum41, 83-95 (1990). · Zbl 0717.47014 · doi:10.1007/BF02573380
[9] de Laubenfels, R.: Entire solutions of the abstract Cauchy problem. Semigroup Forum42, 83-105 (1991). · Zbl 0746.47018 · doi:10.1007/BF02573409
[10] de Laubenfels, R.:C-existence families and improperly posed problems. Tübingen: Semesterbericht Funktionalanalysis 155-171. Wintersemester 1989/1990.
[11] de Laubenfels, R.: Integrated semigroups and integrodifferential equations, Math. Z.204, 501-514 (1990). · Zbl 0682.47022 · doi:10.1007/BF02570889
[12] de Laubenfels, R.: Existence and uniqueness families for the abstract Cauchy problem. J. London Math. Soc.44, 310-338 (1991). · Zbl 0766.47011 · doi:10.1112/jlms/s2-44.2.310
[13] Fattorini, H. O.: Ordinary differential equations in linear topological spaces. I. J. Diff. Eqns.5, 72-105 (1969). · Zbl 0175.15101 · doi:10.1016/0022-0396(69)90105-3
[14] Goldstein, J. A.: Semigroups of Linear Operators and Applications. Oxford, New York, 1985. · Zbl 0592.47034
[15] Goldstein, J. A., Hieber, M.: Scattering theory and equipartition of energy. Tübingen: Semesterbericht Funktionalanalysis 95-110 (1990).
[16] Goldstein, J. A., Sandefur, J. T.: Equipartition of energy for symmetric hyperbolic systems. In: Constructive Approaches to Mathematical Models 395-411 (ed. byC. Coffman andG. Fix). New York: Academic Press. (1979).
[17] Goldstein, J. A., Sandefur, J. T.: Abstract equipartition of energy theorems. J. Math. Anal. Appl.67, 58-74 (1979). · Zbl 0403.47011 · doi:10.1016/0022-247X(79)90006-4
[18] Goldstein, J. A., Sandefur, J. T.: Equipartition of energy for higher order hyperbolic equations. Comm. Partial Differential Equations7, 1217-1251 (1982). · Zbl 0516.35049 · doi:10.1080/03605308208820250
[19] Goldstein, J. A. Sandefur, J. T.: An abstract D’Alembert formula. SIAM J. Math. Anal.18, 842-856 (1987). · Zbl 0621.47038 · doi:10.1137/0518062
[20] Goldstein, J. A., Svirsky, R.: On a domain characterization of Schrödinger operators with magnetic vector potentials and singular potentials. Proc. Amer. Math. Soc.105, 317-323 (1989). · Zbl 0692.47024
[21] Hille, E.: Uné généralisation du problème de Cauchy. Ann. Inst. Fourier4, 31-48 (1952). · Zbl 0055.34503
[22] Miyadera, I.: On the generators of exponentially boundedC-semigroups. Proc. Japan Acad. Ser. A.62, 239-242 (1986). · Zbl 0617.47032 · doi:10.3792/pjaa.62.239
[23] Miyadera, I., Tanaka, N.: Exponentially boundedC-semigroups and generation of semigroups. Tokyo J. Math.12, 99-115 (1989). · Zbl 0702.47028 · doi:10.3836/tjm/1270133551
[24] Nagel, R. (ed.): One-Parameter Semigroups of Positive Operators. Lect. Notes Math.1184. Berlin-Heidelberg-New York: Springer. 1986. · Zbl 0585.47030
[25] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer. 1983. · Zbl 0516.47023
[26] Sandefur, J. T.: Higher order abstract Cauchy problems. J. Math. Anal. Appl.60, 728-742 (1977). · Zbl 0358.35068 · doi:10.1016/0022-247X(77)90012-9
[27] Tanaka, N.: On the exponentially boundedC-semigroups. Tokyo J. Math.10, 107-117 (1987). · Zbl 0631.47029 · doi:10.3836/tjm/1270141795
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.