×

zbMATH — the first resource for mathematics

On the structure of the set of admissible perturbations. (English. Russian original) Zbl 0784.47023
J. Sov. Math. 58, No. 6, 548-553 (1992); translation from Teor. Funkts., Funkts. Anal. Prilozh. 53, 79-87 (1990).
See the review in Zbl 0754.47012.

MSC:
47A55 Perturbation theory of linear operators
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
PDF BibTeX Cite
Full Text: DOI
References:
[1] J. Anderson, Gas-Dynamic Lasers. An Introduction [Russian translation], Mir, Moscow (1976).
[2] A. S. Bashkin, V. I. Igoshin, A. I. Nikitin, and A. N. Oraevskii, Chemical Lasers [in Russian], VINITI, Moscow (1975).
[3] B. F. Gordietz, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in Russian], Nauka, Moscow (1980).
[4] S. A. Losev, Gas-Dynamic Lasers [in Russian], Nauka, Moscow (1977).
[5] S. A. Losev, O. P. Shatalov, and I. B. Zabelinskii, On the Possibility of Creation of a Photorecombination Laser [in Russian], Moscow (1975).
[6] I. I. Lyashko, L. A. Maksimenko, and V. P. Sukhenko, ?Nonequilibrium gas expansion in short nozzles allowing for electron-chemical kinetics,? Dokl. AN UkrSSR, Ser. A, No. 12, 34?36 (1983).
[7] E. E. Nikitin and A. I. Osipov, ?Oscillation relaxation in gases. Kinetics and catalysis,? in: Itogi Nauki i Tekhniki, vol. 4, VINITI, Moscow (1977).
[8] A Ferry, ed., Main Results of Shock Pipe Experiments [Russian translation], Gosatomizdat, Moscow (1963).
[9] V. P. Sukhenko, ?Nonequilibrium expansion of halogens in short nozzles,? Preprint No. 5, Inst. Fiziki AN UkrSSR, Kiev (1982).
[10] V. P. Glushko, ed., Thermodynamic Properties of Substances [in Russian], Vols. 1, 2, Izd Akad. Nauk SSSR, Moscow (1962).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.