×

zbMATH — the first resource for mathematics

Stabilization by output feedback for systems with ISS inverse dynamics. (English) Zbl 0784.93088
Summary: We consider the subclass of the set of systems which admit a global norm form where only the output and not its time derivatives appear in the nonlinearities. We prove that, when the inverse dynamics are “input-to- state stable” (ISS) and a finite gain condition is satisfied, global asymptotic stability can be achieved by dynamic output feedback.

MSC:
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boothby, W.M., An introduction to differentiable manifolds and Riemannian geometry, (1975), Academic Press New York · Zbl 0333.53001
[2] Byrnes, C.; Isidori, A., Asymptotic stabilization of minimum phase nonlinear systems, IEEE trans. automat. control, 36, 1122-1137, (1991) · Zbl 0758.93060
[3] Coron, J.-M.; Praly, L., Adding an integrator for the stabilization problem, Systems control lett., 17, 89-104, (1991) · Zbl 0747.93072
[4] Freeman, R.; Kokotovic, P., Backstepping design of robust controllers for a class of nonlinear systems, (), 307-312
[5] Hardy, G.; Littlewood, J.E.; Pólya, G., Inequalities, (1989), Cambridge Mathematical Library · Zbl 0634.26008
[6] Isidori, A., Nonlinear control systems, (1989), Springer Berlin · Zbl 0714.93021
[7] Z.-P. Jiang and L. Praly, Technical results for the study of ribustness of Lagrange stability, Systems Control Lett., submitted. · Zbl 0800.93997
[8] Kanellakopoulos, I.; Kokotovic, P.; Morse, A.S., A toolkit for nonlinear feedback design, Systems control lett., 18, 83-92, (1992) · Zbl 0743.93039
[9] Khalil, H.; Saberi, A., Adaptive stabilization of a class of nonlinear systems using high-gain feed-back, IEEE trans. automat. control, 32, 1031-1035, (1987) · Zbl 0625.93040
[10] Mareels, I.M.Y.; Hill, D.J., Monotone stability of nonlinear feedback systems, J. math. systems estimation control, 2, 275-291, (1992) · Zbl 0776.93039
[11] Marino, R.; Tomei, P., Dynamic output feedback linearization and global stabilization, Systems control lett., 17, 115-121, (1991) · Zbl 0747.93069
[12] Marino, R.; Tomei, P., Robust output feedback stabilization of single input single output nonlinear systems, (), 2503-2508
[13] Marino, R.; Tomei, P., Self-tuning stabilization of feedback linearizable systems, () · Zbl 0964.93056
[14] Miller, R.K.; Michel, A.N., Ordinary differential equations, (1982), Academic Press New York · Zbl 0499.34024
[15] Pomet, J.-B.; Praly, L., A result on robust boundedness, Systems control lett., 10, 83-92, (1988) · Zbl 0638.93068
[16] Seibert, P.; Suarez, R., Global stabilization of nonlinear cascade systems, Systems control lett., 14, 347-352, (1990) · Zbl 0699.93073
[17] Sontag, E.D., Smooth stabilization implies coprime factorization, IEEE trans. automat. control, 34, 435-443, (1989) · Zbl 0682.93045
[18] Sontag, E.D., Further facts about input to state stabilization, IEEE trans. automat. control, 35, 473-476, (1990) · Zbl 0704.93056
[19] Sussmann, H.; Kokotovic, P., The peaking phenomenon and the global stabilization of nonlinear systems, IEEE trans. automat. control, 36, 424-440, (1991) · Zbl 0749.93070
[20] Vidyasagar, M.; Vannelli, A., New relationships between input-output and Lyapunov stability, IEEE trans. automat. control, 27, 481-483, (1982) · Zbl 0479.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.