zbMATH — the first resource for mathematics

A justification of nonlinear properly invariant plate theories. (English) Zbl 0789.73039
The paper represents a reformulation and a precise formalization of the asymptotic approach to the three-dimensional nonlinear elasticity. In the formal asymptotic analysis two assumptions are made: (i) the applied loads admit an expansion in power series in the thickness \(\varepsilon\), after a reparametrization of an \(\varepsilon\)-independent domain is introduced, (ii) the deformations of the plate, reparametrized to the \(\varepsilon\)-independent domain, can be formally expanded in powers of \(\varepsilon\). It is shown, that the leading terms in an asymptotic expansion of the three-dimensional nonlinear theory describe the nonlinear membrane theory and the nonlinear inextensional theory. These models, contrary to the von Kármán model of plates, inherit the full invariance properties of the three-dimensional theory. The relation to the model of Cosserat’s directed media and the possible generalization of the here considered Saint Venant-Kirchhoff materials are discussed.

74K20 Plates
74B20 Nonlinear elasticity
Full Text: DOI
[1] Antman, S. S., 1972, The Theory of Rods, Handbuch der Physik Vol. Via/2, Mechanics of Solids II, C. Truesdell, ed., Springer-Verlag, Berlin.
[2] Antman, S. S., 1976, Ordinary Differential Equations of Nonlinear Elasticity I: Foundations of the Theories of Non-linearly Elastic Rods and Shells, Arch. Rational Mech. Anal. 61, 307-351. · Zbl 0354.73046
[3] Antman, S. S., & Calderer, M. C., 1985, Asymptotic Shapes of Inflated Noncircular Elastic Rings, Math. Proc. Cam. Phil. Soc. 97, 357-379. · Zbl 0569.73045 · doi:10.1017/S0305004100062903
[4] Antman, S. S., & Marlow, R. S., 1991, Material Constraints, Compatibility, and Langrange Multipliers. Applications to Rod and Shell Theories, Arch. Rational Mech. Anal. 116, 257-299. · Zbl 0769.73012 · doi:10.1007/BF00375123
[5] Antman, S. S., & Pierce, J. F., 1990, The Intricate Global Structure of Buckled States of Compressible Columns, SIAM Appl. Math. 50, 395-419. · Zbl 0707.73029 · doi:10.1137/0150024
[6] Ball, J. M., 1977, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal. 63, 337-403. · Zbl 0368.73040 · doi:10.1007/BF00279992
[7] Casey, J., & Naghdi, P. M., 1981, An Invariant Infinitesimal Theory of Motions Superposed on a Given Motion, Arch. Rational Mech. Anal. 76, 355-391. · Zbl 0498.73005 · doi:10.1007/BF00249971
[8] Ciarlet, P. G., 1980, A Justification of the von Kármán Equations, Arch. Rational Mech. Anal. 73, 349-389. · Zbl 0443.73034 · doi:10.1007/BF00247674
[9] Ciarlet, P. G., 1988, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam. · Zbl 0648.73014
[10] Ciarlet, P. G., 1990, Plates and Junctions in Elastic Multi-structures: An Asymptotic Analysis, Springer-Verlag, Berlin. · Zbl 0706.73046
[11] Ciarlet, P. G., & Destuynder, P., 1979, A Justification of a Nonlinear Model in Plate Theory, Comp. Meth. Appl. Mech. Engng. 17/18, 227-258. · Zbl 0405.73050 · doi:10.1016/0045-7825(79)90089-6
[12] Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A., & Tuter, B., 1988, Asymptotic Theory and Analysis for Displacements and Stress Distribution in Nonlinear Elastic Straight Slender Rods, J. Elasticity 19, 111-161. · Zbl 0653.73010 · doi:10.1007/BF00040890
[13] Cosserat, E. & F., 1909, Théorie des Corps Déformables, Appendix, pp. 953-1173, of Chwolson’s Traité de Physique, 2nd edition, Paris.
[14] Davet, J. L., 1986, Justification de modèles de plaques non linéaires pour des lois des comportement générales, Modelisation Math. Anal. Num. 20, 225-249. · Zbl 0634.73048
[15] Do Carmo, M. P., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs. · Zbl 0326.53001
[16] Ericksen, J. L., & Truesdell, C., 1958, Exact Theory of Stress and Strain in Rods and Shells, Arch. Rational Mech. Anal. 1, 295-323. · Zbl 0081.39303 · doi:10.1007/BF00298012
[17] Fox, D. D., Raoult, A., & Simo, J. C., 1992, Invariant Asymptotic Models for Nonlinear Elastic Thin Structures, C. R. Acad. Sci. Paris, Ser. I, 315, 235-240. · Zbl 0760.73034
[18] Friedrichs, K. O., & Dressler, R. F., 1961, A Boundary-Layer Theory for Elastic Plates, Comm. Pure Appl. Math. 14, 1-33. · Zbl 0096.40001 · doi:10.1002/cpa.3160140102
[19] Goldenveizer, A. L., 1964, The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells, Proc. 11th International Congress Applied Mechanics, 306-311.
[20] Goldenveizer, A, L., 1980, Asymptotic method in the theory of shells, Proc. 15th International Congress Applied Mechanics, 91-104.
[21] Goldenveizer, A. L., 1976, Theory of Thin Elastic Shells, Nauka, Moscow.
[22] Green, A. E., 1962, On the theory of thin elastic shells, Proc. Roy. Soc. London A269, 143-160 · Zbl 0201.57506
[23] Green, A. E., 1963, Boundary layer equations in the theory of thin elastic shells, Proc. Roy. Soc. London A269, 481-491.
[24] Green, A. E., & Zerna, W., 1968, Theoretial Elasticity, 2nd ed., Oxfort University Press.
[25] John, F., 1965, Estimates for the Derivatives of the Stresses in a Thin Shell and Interior Shell Equations, Comm. Pure Appl. Math. 18, 235-267. · doi:10.1002/cpa.3160180120
[26] Karwowski, A. J., 1990, Asymptotic Models for a Long, Elastic Cylinder, J. Elasticity 24, 229-287. · Zbl 0733.73038 · doi:10.1007/BF00115560
[27] Love, A. E. H., 1927, Mathematical Theory of Elasticity, Cambridge University Press.
[28] Naghdi, P. M., 1972, The Theory of Shells, Handbuch der Physik, Vol. VIa/2, Mechanics of Solids II, C. Truesdell, ed., Springer-Verlag, Berlin. · Zbl 0283.73034
[29] Raoult, A., 1988, Doctoral Dissertation, Université Pierre et Marie Curie.
[30] Reissner, E., 1964, On the Derivation of the Theory of Thin Elastic Shells, J. Math. Phys. 43, 263-277. · Zbl 0125.14603
[31] Rivlin, R. S., & Ericksen, J. L., 1955, Stress-Deformation Relations for Isotropic Materials, J. Rational Mech. Anal. 4, 323-425. · Zbl 0064.42004
[32] Sanchez-Palencia, E., 1989, Statique et dynamique des coques minces, I & II, C. R. Acad. Sci. Paris, Ser. I, 309, 411-412, 531-537. · Zbl 0697.73051
[33] Simo, J. C., & Fox, D. D., 1989, On a Stress Resultant Geometrially Exact Shell Model. Part I: Formulation and Optimal Parametrization, Comp. Meth. Appl. Mech. Engng. 72, 267-304. · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[34] Simo, J. C., Lewis, D., & Marsden, J. E., 1991, Stability of Relative Equilibria. Part I: The Reduced Energy Momentum Method, Arch. Rational Mech. Anal. 115, 15-59. · Zbl 0738.70010 · doi:10.1007/BF01881678
[35] Simo, J. C., Marsden, J. E., & Krishnaprasad, P. S., 1988, The Hamiltonian Structure of Elasticity. The Convective Representation of Solids, Rods and Plates, Arch. Rational Mech. Anal. 104, 125-183. · Zbl 0668.73014 · doi:10.1007/BF00251673
[36] Simo, J. C., Posbergh, T., & Marsden, J. E., 1991, Stability of Relative Equilibria. Part II: Application to Nonlinear Elasticity, Arch. Rational Mech. Anal. 115, 61-100. · Zbl 0738.70011 · doi:10.1007/BF01881679
[37] Simo, J. C., Rifai, M. S., & Fox, D. D., 1990, On a Stress Resultant Geometrically Exact Shell Model. Part IV: Variable Thickness Shells with Through-the-Thickness Stretching, Comp. Meth. Appl. Mech. Engng. 80, 91-126. · Zbl 0746.73016 · doi:10.1016/0045-7825(90)90143-A
[38] Simo, J. C., & Vu-Quoc, L., 1988, The Role of Nonlinear Theories in the Dynamics of Fast Rotating Flexible Structures, J. Sound Vibration 119, 487-508. · Zbl 1235.74193 · doi:10.1016/0022-460X(87)90410-X
[39] Stoker, J. J., 1969, Differential Geometry, Wiley-Interscience, New York.
[40] Truesdell, C., & Toupin, R. A., 1960, The Classical Field Theories in S. Flügge’s Handbuch der Physik, Vol. III/1, Springer-Verlag, Berlin.
[41] Truesdell, C., & Noll, W., 1965, The Nonlinear Field Theories in S. Flügge’s Handbuch der Physik, Vol. III/3, Springer-Verlag, Berlin.
[42] Valent, T., 1988, Boundary Value Problems of Finite Elasticity, Springer-Verlag, Berlin. · Zbl 0648.73019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.