×

zbMATH — the first resource for mathematics

A global existence theorem for the initial-boundary-value problem for the Boltzmann equation when the boundaries are not isothermal. (English) Zbl 0789.76075
Summary: We extend the existence theorem recently proved by K. Hamdache [Arch. Ration. Mech. Anal. 119, No. 4, 309-353 (1992; Zbl 0777.76084)] for the initial-boundary value problem for the nonlinear Boltzmann equation in a vessel with isothermal boundaries to more general situations including the case when the boundaries are not isothermal. In the latter case, a cut-off for large speeds is introduced in the collision term of the Boltzmann equation.

MSC:
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
45K05 Integro-partial differential equations
Citations:
Zbl 0777.76084
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Hamdache, Initial boundary value problems for Boltzmann equation. Global existence of weak solutions. Arch. Rational Mech. Anal. 119, 309-353 (1992). · Zbl 0777.76084
[2] R. DiPerna & P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. of Math. 130, 321-366 (1989). · Zbl 0698.45010
[3] C. Cercignani, Mathematical Methods in Kinetic Theory, 2nd edition, Plenum Press, New York (1990). · Zbl 0726.76083
[4] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York (1987). · Zbl 0960.82513
[5] L. Arkeryd, C. Cercignani & R. Illner, Measure solutions of the steady Boltzmann equation in a slab, Commun. Math. Phys. 142, 285-296 (1991). · Zbl 0733.76063
[6] L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations, Arch. Rational Mech. Anal. 110, 73-91 (1990). · Zbl 0705.76070
[7] C. Cercignani, Equilibrium states and trend to equilibrium in a gas according to the Boltzmann equation, Rend. Mat. Appl. 10, 77-95 (1990). · Zbl 0723.76079
[8] L. Arkeryd, On the strong L 1 trend to equilibrium for the Boltzmann equation, Studies in Appl. Math. 87, 283-288 (1992). · Zbl 0762.35089
[9] S. Kawashima, Global solutions to the initial-boundary value problems for the discrete Boltzmann equation, Nonlin. Anal. 17, 577-597 (1991). · Zbl 0763.35075
[10] J. Darrozés & J.-P. Guiraud, Généralisation formelle du théorème H en présence de parois. Applications, C.R. Acad. Sci. Paris A 262, 1368-1371 (1966).
[11] C. Cercignani & M. Lampis, Kinetic models for gas-surface interactions, Transp. Th. Stat. Phys. 1, 101-114 (1971). · Zbl 0288.76041
[12] C. Cercignani, Scattering kernels for gas-surface interactions, Transp. Th. Stat. Phys. 2, 27-53 (1972).
[13] S. Ukai, Solutions of the Boltzmann equation, in Pattern and Waves ? Qualitative Analysis of Nonlinear Differential Equations, 37-96 (1986).
[14] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal. 116, 307-315 (1992). · Zbl 0753.76151
[15] J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Univ. München (1980).
[16] R. Beals & V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121, 370-405 (1987). · Zbl 0657.45007
[17] M. Cannone & C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett. 4, 63-67 (1991). · Zbl 0744.45005
[18] F. Golse, P. L. Lions, B. Perthame & R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76, 110-125 (1988). · Zbl 0652.47031
[19] L. Arkeryd & C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann Equation, Comm. Partial Diff. Eqs. 14, 1071-1089 (1989). · Zbl 0688.76053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.