×

On Fatou’s lemma and parametric integrals for set-valued functions. (English) Zbl 0790.28009

This paper deals with a set-valued Fatou’s lemma for multifunctions and their conditional expectations in the sense of Hiai and Umegaki. The author presents a new version of some of his own results [Int. J. Math. Math. Sci. 10, 433-442 (1987; Zbl 0619.28009)]. Section 4 is concerned with the study of parametrized set-valued integrals.
Reviewer: H.-A.Klei (Paris)

MSC:

28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections

Citations:

Zbl 0619.28009
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artstein, Z., A note on Fatou’s lemma in several dimensions, J. Math. Econ., 6, 277-282 (1979) · Zbl 0433.28004 · doi:10.1016/0304-4068(79)90013-2
[2] Ash, R., Real analysis and probability (1972), New Delhi: Academic Press, New Delhi · Zbl 1381.28001
[3] Aubin, J-P; Ekeland, I., Applied nonlinear analysis (1984), New Delhi: Wiley, New Delhi · Zbl 0641.47066
[4] Aumann, R., Integrals of set-valued function, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301 · doi:10.1016/0022-247X(65)90049-1
[5] Aumann, R., An elementary proof that integration preserves upper semicontinuity, J. Math. Econ., 3, 15-18 (1976) · Zbl 0352.28003 · doi:10.1016/0304-4068(76)90003-3
[6] Barlder, E., Fatou’s lemma in infinite dimensions, J. Math. Anal. Appl., 136, 450-465 (1988) · Zbl 0664.28003 · doi:10.1016/0022-247X(88)90096-0
[7] Bertsekas, D.; Shreve, S., Stochastic optimal control: the discrete time case (1978), New Delhi: Academic Press, New Delhi · Zbl 0471.93002
[8] De Blasi, F.; Myjak, J., On continuous approximations for multifunctions, Pacific J. Math., 123, 9-31 (1986) · Zbl 0595.47037
[9] Hess, C., Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl., 153, 226-249 (1990) · Zbl 0748.47046 · doi:10.1016/0022-247X(90)90275-K
[10] Hiai, F.; Umegaki, H., Integrals, conditional expectations and martingales of multivalued functions, J. Multiv. Anal., 7, 149-182 (1977) · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[11] Hiai, F., Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Am. Math. Soc., 291, 613-627 (1985) · Zbl 0583.60007 · doi:10.2307/2000101
[12] Hildenbrand, W.; Mertens, J. F., On Fatou’s lemma in several dimensions, Z. Wahrsch verw. Gebiete, 17, 151-155 (1977) · Zbl 0202.05005 · doi:10.1007/BF00538866
[13] Kandilakis, D.; Papageorgiou, N. S., On the properties of the Aumann integral with applications to differential inclusions and control systems, Czech. Math. J., 39, 1-15 (1989) · Zbl 0677.28005
[14] Kato T, Accretive operators and nonlinear evolution equations in Banach spaces, inProc. Symp. Nonl. Funct. Anal, (ed.) F Browder, RI AMS Providence, (1968) pp. 138-161 · Zbl 0232.47069
[15] Khan, M. A.; Majumdar, M., Weak sequential convergence in L^1(μ,X)and an approximate version of Fatou’s lemma, J. Math. Anal. Appl., 114, 569-573 (1986) · Zbl 0602.46033 · doi:10.1016/0022-247X(86)90108-3
[16] Klei, H. A., Le théorème de Radon-Nikodym pour des multimesures a valeurs faiblement compactes, C. R. Acad. Sci. Paris, 297, 643-646 (1983) · Zbl 0535.28005
[17] Klein, E.; Thompson, A., Theory of correspondences (1984), New Delhi: Wiley, New Delhi · Zbl 0556.28012
[18] Mosco, U., Convergence of convex sets and of solutions of variational inequalities, Adv. Math., 3, 510-585 (1969) · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[19] Papageorgiou, N. S., Convergence theorems for Banach space valued integrable multifunctions, Int. J. Math. Math. Sci., 10, 433-442 (1987) · Zbl 0619.28009 · doi:10.1155/S0161171287000516
[20] Papageorgiou, N. S., On quasilinear differential inclusions in Banach spaces, Bull. Polish Acad. Sci., 35, 407-415 (1987) · Zbl 0634.34047
[21] Papageorgiou, N. S., On the theory of Banach space valued multifunctions Part 1: Integration and conditional expectation, J. Multiv. Anal., 17, 185-206 (1985) · Zbl 0579.28009 · doi:10.1016/0047-259X(85)90078-8
[22] Papageorgiou N S, Weak convergence of random sets in Banach spaces,J. Math. Anal. Appl. (to appear) · Zbl 0784.46010
[23] Pucci, P.; Vitillaro, A., A representation theorem for Aumann integral, J. Math. Anal. Appl., 102, 86-101 (1984) · Zbl 0544.28009 · doi:10.1016/0022-247X(84)90204-X
[24] Schmeidler, D., Fatou’s lemma in several dimensions, Proc. Am Math. Soc., 24, 300-306 (1970) · Zbl 0187.31403 · doi:10.2307/2036351
[25] Valadier, M., Sur 1’ esperance conditionelle multivoque non-convexe, Ann. Inst. H. Poincare (Sec. B), 16, 109-116 (1980) · Zbl 0444.60005
[26] Wagner, D., Survey of measurable selection theorems, SIAM J. Control Optim., 15, 859-903 (1977) · Zbl 0407.28006 · doi:10.1137/0315056
[27] Willansky, A., Modern methods in topological vector spaces (1978), New Delhi: McGraw-Hill, New Delhi · Zbl 0395.46001
[28] Yannelis, N., Fatou’s lemma in infinite dimensional spaces, Proc. Am. Math. Soc., 102, 303-310 (1988) · Zbl 0657.28009 · doi:10.2307/2045880
[29] Yannelis, N., Weak sequential convergence inL_p(μ,X), J. Math. Anal. Appl., 141, 72-83 (1989) · Zbl 0677.28006 · doi:10.1016/0022-247X(89)90206-0
[30] Yannelis, N., On the upper and lower semicontinuity of the Aumann integral, J. Math. Econ., 19, 373-389 (1990) · Zbl 0723.28005 · doi:10.1016/0304-4068(90)90028-8
[31] Zheing, Wei-an, A note on the convergence of sequences of conditional expectations of random variables, Z. Wahr verw. Gebiete, 53, 291-292 (1980) · Zbl 0436.60005 · doi:10.1007/BF00531438
[32] Diestel, J.; Uhl, J., Vector Measures Math. Surveys (1977), Providence, R I: AMS, Providence, R I · Zbl 0369.46039
[33] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), Berlin: Springer, Berlin · Zbl 0516.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.