Convergence of path measures arising from a mean field or polaron type interaction. (English) Zbl 0791.60093

We discuss the limiting path measures of Markov processes with either a mean field or a polaron type interaction of the paths. In the polaron type situation the strength is decaying at large distances on the time axis, and so the interaction is of short range in time. In contrast, in the mean field model, the interaction is weak, but of long range in time. M. D. Donsker and S. R. S. Varadhan [Commun. Pure Appl. Math. 36, 505-528 (1983; Zbl 0538.60081)] proved that for the partition functions, there is a transition from the polaron type to the mean field interaction when passing to a limit by letting the strength tend to zero while increasing the range. The discussion of the path measures is more subtle. We treat the mean field case as an example of a differentiable interaction and discuss the transition from the polaron type to the mean field interaction for two instructive examples.
Reviewer: E.Bolthausen


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics


Zbl 0538.60081
Full Text: DOI


[1] Billingsley, P.: Convergence of probability measures. New York: John Wiley & Sons 1968 · Zbl 0172.21201
[2] Bolthausen, E., Schmock, U.: On the maximum entropy principle for uniformly ergodic Markov chains. Stochastic Process Appl.33, 1-27 (1989) · Zbl 0691.60023
[3] Deuschel, J.-D., Stroock, D.W.: Large deviations. San Diego: Academic Press 1989 · Zbl 0705.60029
[4] Dieudonné, J.: Treatise on analysis, Vol. II. New York: Academic Press 1970 · Zbl 0202.04901
[5] Donsker, M. D., Varadhan, S. R. S.: Asymptotic evaluation of certain Markov process expectations for large time, IV. Comm. Pure Appl. Math.36, 183-212 (1983) · Zbl 0512.60068
[6] Donsker, M. D., Varadhan, S. R. S.: Asymptotic for the polaron. Comm. Pure Appl. Math.36, 505-528 (1983) · Zbl 0538.60081
[7] Doob, J. L.: Stochastic processes. New York: John Wiley & Sons 1953 · Zbl 0053.26802
[8] Doob, J. L.: Classical potential theory and its probabilistic counterpart. New York: Springer-Verlag 1984 · Zbl 0549.31001
[9] Dunford, N., Schwartz, J. T.: Linear operators, Part I: General theory. New York: Interscience Publishers 1958 · Zbl 0084.10402
[10] Ethier, S. N., Kurtz, T. G.: Markov processes, characterization and convergence. New York: John Wiley & Sons 1986 · Zbl 0592.60049
[11] Itô, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. Osaka J. Math.5, 35-48 (1968) · Zbl 0177.45102
[12] Kusuoka, S., Tamura, Y.: Symmetric Markov processes with mean field potentials. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.34, 371-389 (1987) · Zbl 0638.60106
[13] Kusuoka, S., Tamura, Y.: Precise estimate for large deviation of Donsker-Varadhan type. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.38, 533-565 (1991) · Zbl 0752.60026
[14] Mansmann, U.: The free energy of the Dirac polaron, an explicit solution. Stochastics34, 93-125 (1991) · Zbl 0726.60021
[15] Mansmann, U.: Strong coupling limit for a certain class of polaron models. Probab. Theory Relat. Fields90, 427-446 (1991) · Zbl 0729.60104
[16] Parthasarathy, K. R.: Probability measures on metric spaces. New York: Academic Press 1967 · Zbl 0153.19101
[17] Reed, M., Simon, B.: Methods of modern mathematical physics, I. Functional analysis. New York: Academic Press 1972 · Zbl 0242.46001
[18] Rogers, L. C. G., Williams, D.: Diffusions, Markov processes, and martingales, Volume 2, Itô calculus. Chichester: John Wiley & Sons 1987 · Zbl 0627.60001
[19] Schaefer, H. H.: Banach lattices and positive operators. Berlin: Springer-Verlag 1974 · Zbl 0296.47023
[20] Schmock, U.: On the maximum entropy principle for Markov chains and processes. Ph. D. Thesis, Technische Universität Berlin 1990 · Zbl 0714.60020
[21] Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979 · Zbl 0434.28013
[22] Spohn, H.: Effective mass of the polaron: A functional integral approach. Ann. Physics175, no. 2, 278-318 (1987)
[23] Spohn, H.: The polaron functional integral. In: Albeverio, S., Blanchard, P., Streit, L. (eds.) Stochastic processes and their applications in mathematics and physics. (Mathematics and Its Applications, vol. 53). Kluwer Academic Publishers, Dordrecht, 1990, pp. 375-387 · Zbl 0709.60108
[24] Widder, D. V.: The Laplace transform: Princeton: Princeton University Press 1946 · Zbl 0060.24801
[25] Williams, D.: Diffusions, Markov processes, and martingales. Chichester: John Wiley & Sons 1979 · Zbl 0402.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.