Mendes, L. G.; Sebastiani, M. On the density of the Pfaffian systems without algebraic solution. (Sur la densité des systèmes de Pfaff sans solution algébrique.) (French) Zbl 0792.58001 Ann. Inst. Fourier 44, No. 1, 271-276 (1994). Let \(M\) be an analytic surface. A. Lins Neto [J. Differ. Geom. 26, 1-31 (1987; Zbl 0625.57012)] introduced a topology in the set \(\Pi(M)\) of holomorphic foliations with isolated singularities on \(M\). \(\Omega \in \Pi(M)\) is “rigid” if it is an isolated point of \(\Pi(M)\). In our paper it is proved that if \(M\) is a projective rational surface non-isomorphic to \(\mathbb{P}_ 2(\mathbb{C})\) then there exists \(\Omega \in \Pi(M)\) rigid and having algebraic leaves. The case of \(\mathbb{P}_ 2(\mathbb{C})\) has been considered by J. P. Jouanolou [‘Equations de Pfaff algébriques’ (1979; Zbl 0477.58002)]. Reviewer: L.G.Mendes and M.Sebastiani (Porto Alegre) Cited in 1 ReviewCited in 1 Document MSC: 58A17 Pfaffian systems 57R30 Foliations in differential topology; geometric theory 32S65 Singularities of holomorphic vector fields and foliations 32S05 Local complex singularities 37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\) Keywords:holomorphic foliations; projective rational surface PDF BibTeX XML Cite \textit{L. G. Mendes} and \textit{M. Sebastiani}, Ann. Inst. Fourier 44, No. 1, 271--276 (1994; Zbl 0792.58001) Full Text: DOI Numdam EuDML References: [1] A. LINS NETO, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geometry, 26 (1987), 1-31. · Zbl 0625.57012 [2] J.-P. JOUANOLOU, Equations de Pfaff algébriques, Lecture Notes in Math. Springer Verlag, vol. 708, 1979. · Zbl 0477.58002 [3] A. BEAUVILLE, Surfaces algébriques complexes, Astérisque, vol. 54 (1978). · Zbl 0394.14014 [4] C. CAMACHO et P. SAD, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math., 115 (1982), 579-595. · Zbl 0503.32007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.