zbMATH — the first resource for mathematics

A new approach to grid generation. (English) Zbl 0794.65085
Summary: An entirely new approach to numerical grid generation, the deformation method, is presented. Each point of an existing grid is moved, in an inter-related manner, to a new position according to a system of \(n\) ordinary differential equations (\(n\) = spacial dimension). The resulting grid has prescribed mesh sizes.

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI
[1] DOI: 10.1016/0021-9991(66)90001-5 · Zbl 0254.65069 · doi:10.1016/0021-9991(66)90001-5
[2] A. S. Dvinsky, Adaptive Grid Generation from Harmonic Maps on Riemannian Manifolds, preprint (1990) · Zbl 0733.65074
[3] Anderson D. A., Applied Math. and Computation 35 (1990)
[4] G. G. Liao, On the variational approach to grid generation (to appear in Numerical Methods for P.D.E.s) (1991)
[5] DOI: 10.1090/S0002-9947-1965-0182927-5 · doi:10.1090/S0002-9947-1965-0182927-5
[6] Banyaga A., Enseignement Math 20 (1974)
[7] Dacorogna B., Ann. Inst. H. Poincare, Analyse Non Lineaire 7 (1990)
[8] DOI: 10.1016/0021-9991(74)90114-4 · Zbl 0283.76011 · doi:10.1016/0021-9991(74)90114-4
[9] Brackbill J., J. Comput. Phys 46 (1982)
[10] Thompson J. F., Numerical Grid Generation (1985) · Zbl 0598.65086
[11] S. S. Sritharan, Mathematical aspects of harmonic grid generation, preprint (1990)
[12] Smith P. W., Complex Variables 10 (1988)
[13] Liao G. G., SIAM 8 (1991)
[14] Steinberg S., Numerical Methods for P.D.E.’s 2 (1985)
[15] Castillo J., Applied Mathematics and Computation 2 (1988)
[16] Lewy H., Comm. in P.D.E.’s 2 (1977)
[17] Peter Li, Annals of Mathematics 125 (1987)
[18] Peter Li, J. Differential Geometry 29 (1989)
[19] G. Liao and J. Su, A direct method in Dacorogna-Moser’s approach of grid generation problems, preprint (1991) · Zbl 0803.65114
[20] G. Liao and J. Su, Grid generation via deformation, preprint (1991) · Zbl 0766.58057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.