×

Optimal estimation of eddy viscosity for a quasi-three-dimensional numerical tidal and storm surge model. (English) Zbl 0794.76057

The computational model used is a simplified version of the so-called vertical/horizontal splitting algorithm proposed by R. W. Lardner and H. M. Cekirge [Appl. Math. Modelling 12, No. 5, 471-481 (1988; Zbl 0656.76010)]. We have estimated eddy viscosity both as a constant and as a variable parameter. The numerical scheme consists of a two-level leapfrog method to solve the depth-averaged equations and a generalized Crank-Nicolson scheme to compute the vertical profile of the velocity field.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography

Citations:

Zbl 0656.76010
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] (ed.), Three-dimensional Coastal Ocean Models, American Geophysical Union, Washington, DC, 1984.
[2] and (eds), Three-dimensional Models of Marine and Estuarine Dynamics, Elsevier, Amsterdam, 1987.
[3] Sasaki, J. Meteorol. Soc. Jpn. 33 pp 262– (1955)
[4] Sasaki, Mon. Weather Rev. 98 pp 875– (1970)
[5] Numerical Solution of the Problems of the Dynamics of the Atmosphere and Oceans, Gidrometeoizdat, Leningrad, 1974.
[6] Das, J. Geophys. Res. (Oceans) 96 pp 15– (1991)
[7] Das, Int. j. numer. methods fluids 15 pp 313– (1992)
[8] Shanno, ACM Trans. Math. Softw. 6 pp 618– (1980)
[9] Nash, SIAM J. Numer. Anal. 21 pp 770– (1984)
[10] Navon, Mon. Weather Rev. 115 pp 1479– (1987)
[11] and , ’A numerical study of the limited memory BFGS method and the truncated Newton method for large scale optimization’, Tech. Rep. NAM 2, Northwestern University, Evanston, IL, 1989.
[12] Lorenc, Q. J. R. Meteorol. Soc. 112 pp 1177– (1986)
[13] ’A review of variational and optimization methods in meteorology’, in (ed.), Variational Methods in Geosciences, Elsevier, New York, 1986.
[14] and , ’Variational and optimization methods in meteorology–a review’, Res. Rep., Supercomputer Computations Research Institute, Florida State University, Tallahassee, FL, 1989.
[15] Chavent, Soc. Petrol. Eng. J. 15 pp 74– (1975)
[16] Carrera, Water Resources Res. 22 pp 199– (1986)
[17] Bennett, J. Phys. Oceanogr. 12 pp 1004– (1982)
[18] Prevost, J. Marine Sci. 44 pp 1– (1986)
[19] Thacker, J. Geophys. Res. 93 pp 1227– (1988)
[20] and , ’On the determination of hydraulic model parameters using the adjoint state formulation’, in (ed.), Modelling Marine Systems, CRC Press, Boca Raton, FL, 1989, pp. 6-18.
[21] Tziperman, J. Phys. Oceanogr. 19 pp 1471– (1989)
[22] ’Data assimilation and parameter estimation in oceanographic models’, Ph.D. Thesis, Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, FL, 1989.
[23] Smedstad, Prog. Oceanogr. 26 pp 179– (1991)
[24] Lardner, Comput. Methods Appl. Mech. Eng. 102 pp 367– (1993)
[25] Lardner, J. Geophys. Res. (Oceans) 98 pp 18– (1993)
[26] Yu, J. Phys. Oceanogr. 21 pp 709– (1991)
[27] and , ’A modified adjoint method for inverse eddy viscosity estimation in coastal circulation models’, in M. L. Spaulding et al. (eds), Estuarine and Coastal Modeling, Proc. 2nd Int. Conf., 1992, Amer. Soc. Civil Engrs. New York, 1992, pp. 733-745.
[28] Yeh, Water Resources Res. 22 pp 95– (1986)
[29] Lardner, Appl. Math. Modell. 12 pp 471– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.