×

zbMATH — the first resource for mathematics

Gamma factors and Plancherel measures. (English) Zbl 0797.11053
Summary: We explicitly calculate gamma factors of Selberg zeta functions and give a neat formula to the associated Plancherel measures. This report supplements the previous one [ibid. 67, 61-64 (1991; Zbl 0738.11041)]. The details are described in [Lectures on multiple sine functions. Notes by S. Koyama (Univ. Tokyo 1991)] and will be published elsewhere.

MSC:
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
43A85 Harmonic analysis on homogeneous spaces
58J52 Determinants and determinant bundles, analytic torsion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. W. Barnes : On the theory of the multiple gamma function. Trans. Cambridge Philos. Soc., 19, 374-425 (1904). · JFM 35.0462.01
[2] R. S. Cahn and J. A. Wolf: Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comment. Math. Helvetici, 51, 1-21 (1976). · Zbl 0327.43013
[3] E. Cartan: Sur la determination d’un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rendiconti del Circolo Matematico di Palermo, 53, 217-252 (1928). · JFM 55.1029.01
[4] D. Fried : The zeta functions of Ruelle and Selberg I. Ann. Scient. Ec. Norm. Sup., 19, 491-517 (1986). · Zbl 0609.58033
[5] R. Gangolli: Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank one. Illinois J. Math., 21, 1-41 (1977). · Zbl 0354.33013
[6] O. Holder: Ueber eine transcendente Function. Gottingen Nachrichten 1886, Nr. 16, pp. 514-522. · JFM 18.0376.01
[7] N. Kurokawa: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad., 67A, 61-64 (1991). · Zbl 0738.11041
[8] N. Kurokawa: Lectures on multiple sine functions. Univ. of Tokyo, 1991, April-July, notes by Shin-ya Koyama. · Zbl 1065.11065
[9] N. Kurokawa: Multiple zeta functions: an example. Proc. of ”Zeta Functions in Geometry” (Tokyo Institute of Technology, 1990 August). · Zbl 0795.11037
[10] N. Kurokawa: Siegel wave forms and Kronecker limit formula without absolute value. RIMS Kyoto Kokyu-roku, 792, 64-133 (1992).
[11] Yu. I. Manin: Lectures on zeta functions and motives. Harvard-MSRI-Yale-Columbia (1991-1992); Max-Planck Lecture Note (1992). · Zbl 0840.14001
[12] R. J. Miatello: On the Plancherel measure for linear Lie groups of rank one. Manu-scripta Math., 29, 247-276 (1979). · Zbl 0426.43010
[13] A. Selberg: Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., 20, 47-87 (1956). · Zbl 0072.08201
[14] T. Shintani: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo, 24, 167-199 (1977). · Zbl 0364.12012
[15] M. Wakayama: Zeta functions of Selberg’s type associated with homogeneous vector bundles. Hiroshima Math. J., 15, 235-295 (1985). · Zbl 0592.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.