Generalized \(q\)-Legendre polynomials. (English) Zbl 0797.33013

The author finds the polynomials \(u_ n\) satisfying the 3-term recursion: \[ (1-q^{n+1}) (1+q^ n) u_{n+1} - f_ nu_ n + q^{2n- 1} (1-q^ n) (1+q^{N+1}) u_{n-1} = 0, \] where \[ f_ n = (1- q^{2n+1}) \left( 2q^ n-(1+q^ n) (1+q^{n+1}) \sum_{j=0}^ nq^{-jn} \left[ {n \over j} \right]_ q \left[ {n+j \over j} \right]_ qx_ j \right). \] For \(x_ 0=x\), \(x_ j=0\), \(j \geq 1\), these give a \(q\)-analog of the Legendre polynomials: the \(\alpha = \beta = 1\) case of the little \(q\)-Jacobi polynomials.


33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Full Text: DOI


[1] Andrews, G.A., Q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, (1986), Amer. Mathematical Soc Providence, RI · Zbl 0594.33001
[2] Andrews, G.A.; Askey, R., Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials, (), 3-26
[3] Hahn, W., Über orthogonalpolynome, die q-differenzengleichungen genügen, Math. nachr., 2, 4-34, (1949) · Zbl 0031.39001
[4] Schmidt, A.L., Generalized Legendre polynomials, J. reine angew. math., 404, 192-202, (1990) · Zbl 0684.33005
[5] Slater, L.J., Generalized hypergeometric functions, (1966), Cambridge Univ. Press Cambridge · Zbl 0135.28101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.