Tatsuoka, Kay An isoperimetric inequality for Artin groups of finite type. (English) Zbl 0798.20030 Trans. Am. Math. Soc. 339, No. 2, 537-551 (1993). W. Thurston has shown that the braid groups are automatic [preprint] and R. Charney has generalised this result to Artin groups of finite type [Math. Ann. 292, No. 4, 671-684 (1992; Zbl 0736.57001)]. It is known that all automatic groups satisfy a quadratic isoperimetric inequality and the author directly verifies that Artin groups of finite type satisfy the above-mentioned inequality. The next result appears to be new: the word problem in Artin groups of finite type is solvable in quadratic time. Reviewer: G.A.Noskov (Omsk) Cited in 7 Documents MSC: 20F36 Braid groups; Artin groups 20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects) 57M05 Fundamental group, presentations, free differential calculus Keywords:braid groups; automatic groups; quadratic isoperimetric inequality; Artin groups of finite type; word problem; quadratic time PDF BibTeX XML Cite \textit{K. Tatsuoka}, Trans. Am. Math. Soc. 339, No. 2, 537--551 (1993; Zbl 0798.20030) Full Text: DOI References: [1] Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. · Zbl 0297.57001 [2] Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245 – 271 (German). · Zbl 0243.20037 · doi:10.1007/BF01406235 · doi.org [3] Kenneth S. Brown, Buildings, Springer-Verlag, New York, 1989. · Zbl 0715.20017 [4] James W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123 – 148. · Zbl 0606.57003 · doi:10.1007/BF00146825 · doi.org [5] R. Charney, (to appear). [6] J. W. Cannon, D. B. A. Epstein, D. F. Holt, M. S. Paterson, and W. P. Thurston, Word processing and group theory. [7] Michael W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), no. 2, 293 – 324. · Zbl 0531.57041 · doi:10.2307/2007079 · doi.org [8] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273 – 302 (French). · Zbl 0238.20034 · doi:10.1007/BF01406236 · doi.org [9] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235 – 254. · Zbl 0194.03303 · doi:10.1093/qmath/20.1.235 · doi.org [10] S. M. Gersten and H. B. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), no. 2, 305 – 334. · Zbl 0714.20016 · doi:10.1007/BF01233430 · doi.org [11] S. M. Gersten , Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer-Verlag, New York, 1987. · Zbl 0626.00014 [12] Craig C. Squier, The homological algebra of Artin groups, Math. Scand. 75 (1994), no. 1, 5 – 43. · Zbl 0839.20065 · doi:10.7146/math.scand.a-12500 · doi.org [13] K. Tatsuoka, A finite \( K(\pi ,1)\) for Artin groups of finite type, preprint. [14] W. Thurston, Finite state algorithms for the braid groups, preprint. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.