zbMATH — the first resource for mathematics

Logic of infinite quantum systems. (English) Zbl 0799.03019
Summary: Limits of sequences of finite-dimensional (AF) \(C^*\)-algebras, such as the CAR algebra for the ideal Fermi gas, are a standard mathematical tool to describe quantum statistical systems arising as thermodynamic limits of finite spin systems. Only in the infinite-volume limit one can, for instance, describe phase transitions as singularities in the thermodynamic potentials, and handle the proliferation of physically inequivalent Hilbert space representations of a system with infinitely many degrees of freedom. As is well known, commutative AF \(C^*\)- algebras correspond to countable Boolean algebras, i.e., algebras of propositions in the classical two-valued calculus. We investigate the noncommutative logic properties of general AF \(C^*\)-algebras, and their corresponding systems. We stress the interplay between Gödel incompleteness and quotient structures – in the light of the “nature does not have ideals” program, stating that there are no quotient structures in physics. We interpret AF \(C^*\)-algebras as algebras of the infinite-valued calculus of Łukasiewicz, i.e., algebras of propositions in Ulam’s “twenty questions” game with lies.

03B50 Many-valued logic
03G25 Other algebras related to logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
Full Text: DOI
[1] Behncke, H., and Leptin, H. (1972).C *-algebras with a two-point dual,Journal of Functional Analysis,10, 330-335. · Zbl 0235.46089 · doi:10.1016/0022-1236(72)90031-6
[2] Belluce, P. (1986). Semisimple algebras of infinite-valued logic and bold fuzzy set theory,Canadian Journal of Mathematics,38, 1356-1379. · Zbl 0625.03009 · doi:10.4153/CJM-1986-069-0
[3] Berlekamp, E. R. (1968). Block coding for the binary symmetric channel with noiseless, delayless feedback, inError Correcting Codes, Wiley, New York, pp. 61-88.
[4] Birkhoff, G., and von Neumann, J. (1936). The logic of quantum mechanics,Annals of Mathematics,37, 823-843. · JFM 62.1061.04 · doi:10.2307/1968621
[5] Blackadar, B. (1980a). A simple C*-algebra with no nontrivial projections,Proceedings of the American Mathematical Society,78, 504-508. · Zbl 0438.46040
[6] Blackadar, B. (1980b). Traces on simple AFC *-algebras,Journal of Functional Analysis,38, 156-168. · Zbl 0443.46037 · doi:10.1016/0022-1236(80)90062-2
[7] Blackadar, B. (1987).K-Theory for Operator Algebras, Springer-Verlag, New York. · Zbl 0597.46072
[8] Bratteli, O. (1972). Inductive limits of finite-dimensionalC *-algebras,Transactions of the American Mathematical Society,171, 195-234. · Zbl 0264.46057
[9] Bratteli, O., and Robinson, D. W. (1979).Operator Algebras and Quantum Statistical Mechanics I, II, Springer-Verlag, Berlin. · Zbl 0421.46048
[10] Chang, C. C. (1958). Algebraic analysis of many valued logics,Transactions of the American Mathematical Society,88, 467-490. · Zbl 0084.00704 · doi:10.1090/S0002-9947-1958-0094302-9
[11] Chang, C. C. (1959). A new proof of the completeness of the Lukasiewicz axioms,Transactions of the American Mathematical Society,93, 74-80. · Zbl 0093.01104
[12] Christensen, E. (1982). Measures on projections and physical states,Communications in Mathematical Physics,86, 529-538. · Zbl 0507.46052 · doi:10.1007/BF01214888
[13] Cignoli, R., D’Ottaviano, I. M. L., and Mundici, D. (1994). Algebras of many-valued sentential calculi of Lukasiewicz, inCole??o CLE, Centro de L?gica, Epistemologia e Historia da Ci?ncia, Universidade Estadual de Campinas, Brazil [in Portuguese].
[14] Cignoli, R., Elliott, G. A., Mundici, D. (n.d.). ReconstructingC *-algebras from their Murray-von Neumann order,Advances in Mathematics, to appear. · Zbl 0823.46053
[15] Cuntz, J. (1982). The internal structure of simpleC *-algebras,Proceedings Symposia Pure Mathematics I,38, 85-115.
[16] Czyzowicz, J., Mundici, D., and Pelc, A. (1989). Ulam’s searching game with lies,Journal of Combinatorial Theory A,52, 62-76. · Zbl 0674.90110 · doi:10.1016/0097-3165(89)90062-9
[17] Di Nola, A. (n.d.). MV algebras in the treatment of uncertainty, in Proceedings IFSA Congress, Bruxelles 1991, R. Lowen, ed., Kluwer, Dordrecht, to appear.
[18] Dixmier, J. (1977).C *-algebras, North-Holland, Amsterdam. · Zbl 0372.46058
[19] Effros, E. G. (1981). Dimensions andC *-algebras, inCBMS Regional Conference Series in Mathematics, Vol. 46,American Mathematical Society, Providence, Rhode Island.
[20] Effros, E. G., and Rosenberg, J. (1978).C *-algebras with approximately inner flip,Pacific Journal of Mathematics,77, 417-443. · Zbl 0412.46052
[21] Elliott, G. A. (1976). On the classification of inductive limits of sequences of semisimple finite-dimensional algebras,Journal of Algebra,38, 29-44. · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[22] Elliott, G. A. (1979). On totally ordered groups andK 0, inLecture Notes in Mathematics, Vol. 734, pp. 1-49. · doi:10.1007/BFb0103152
[23] Elliott, G. A., and Mundici, D. (1993). A characterization of lattice-ordered Abelian groups,Mathematische Zeitschrift,213, 179-185. · Zbl 0789.06011 · doi:10.1007/BF03025717
[24] Emch, G. G. (1984).Mathematical and Conceptual Foundations of 20th Century Physics, North-Holland, Amsterdam. · Zbl 0591.01020
[25] Goodearl, K. R. (1982).Notes on Real and Complex C *-Algebras, Birkh?user, Boston. · Zbl 0495.46039
[26] Grigolia, R. (1977). Algebraic analysis of Tarski Lukasiewiczn-valued logical systems, inSelected Papers on Lukasiewicz Sentential Calculi, R. W?jcicki and G. Malinowski, eds., Polish Academy of Sciences, Ossolineum, Wroclaw, pp. 81-92.
[27] Haag, D., and Kastler, D. (1964). An algebraic approach to quantum field theory,Journal of Mathematical Physics,5, 848-861. · Zbl 0139.46003 · doi:10.1063/1.1704187
[28] Kastler, D. (1982). Does ergodicity plus locality imply the Gibbs structure?Proceedings Symposia Pure Mathematics II,38, 467-489. · Zbl 0542.46036
[29] Maeda, S. (1990). Probability measures on projections in von Neumann algebras,Reviews in Mathematical Physics,1, 235-290. · Zbl 0718.46046 · doi:10.1142/S0129055X89000122
[30] Mundici, D. (1986). Interpretation of AFC *-algebras in Lukasiewicz sentential calculus,Journal of Functional Analysis,65, 15-63. · Zbl 0597.46059 · doi:10.1016/0022-1236(86)90015-7
[31] Mundici, D. (1987a). The Turing complexity of AFC *-algebras with lattice-orderedK 0,Lecture Notes in Computer Science,270, 256-264.
[32] Mundici, D. (1987b). Satisfiability in many-valued sentential logic is NP-complete,Theoretical Computer Science,52, 145-153. · Zbl 0639.03042 · doi:10.1016/0304-3975(87)90083-1
[33] Mundici, D. (1988a). Farey stellar subdivisions, ultrasimplicial groups, andK 0 of AFC *-algebras,Advances in Mathematics,68, 23-39. · Zbl 0678.06008 · doi:10.1016/0001-8708(88)90006-0
[34] Mundici, D. (1988b). Free products in the category of Abelianl-groups with strong unit,Journal of Algebra,113, 89-109. · Zbl 0658.06010 · doi:10.1016/0021-8693(88)90185-8
[35] Mundici, D. (1988c). The derivative of truth in Lukasiewicz sentential calculus, in Methods and Applications of Mathematical Logic,Contemporary Mathematics,69, 209-227. · Zbl 0648.03011
[36] Mundici, D. (1989). TheC *-algebras of three-valued logic, inProceedings Logic Colloquium 1988, North-Holland, Amsterdam, pp. 61-77.
[37] Mundici, D. (1991). The complexity of adaptive error-correcting codes,Lecture Notes in Computer Science,533, 300-307. · Zbl 0799.94010
[38] Mundici, D. (1992a). Turing complexity of Behncke-LeptinC *-algebras with a two-point dual,Annals of Mathematics and Artificial Intelligence,6, 287-294. · Zbl 0865.03033 · doi:10.1007/BF01531034
[39] Mundici, D. (1992b), The logic of Ulam’s game with lies, inKnowledge, Belief and Strategic Interaction, C. Bicchieri and M. L. Dalla Chiara, eds., Cambridge University Press, pp. 275-284. · Zbl 0831.90131
[40] Mundici, D. (1993). Ulam games, Lukasiewicz logic, and AFC *-algebras,Fundamenta Informaticae,18, 151-161. · Zbl 0780.03030
[41] Mundici, D. (n.d.a).K 0, relative dimension, and theC *-algebras of Post logic, inProceedings IX Latin American Symposium in Mathematical Logic, Bahia Blanca, Argentina, 1992, M. Abad, ed., Notas de L?gica Mathem?tica, Bahia Blanca, to appear.
[42] Mundici, D. (n.d.-b). Uncertainty measures in MV algebras, and states of AFC *-algebras, to appear.
[43] Mundici, D., and Panti, G. (n.d.). Extending addition in Elliott’s local semigroup,Journal of Functional Analysis, to appear. · Zbl 0799.46077
[44] Sewell, G. L. (1986).Quantum Theory of Collective Phenomena, Clarendon Press, Oxford.
[45] Tarski, A., and Lukasiewicz, J. (1956). Investigations into the sentential calculus, inLogic, Semantics, Metamathematics, Oxford University Press, 1956, pp. 38-59.
[46] Ulam, S. M. (1976).Adventures of a Mathematician, Scribner’s, New York. · Zbl 0352.01009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.