Syntomic regulators and values of \(p\)-adic \(L\)-functions. II. (Régulateurs syntomiques et valeurs de fonctions \(L\) \(p\)-adiques. II.) (French) Zbl 0799.14010

[For part I see Invent. Math. 99, 292–320 (1990; Zbl 0667.14006).]
Let \(k\) be a finite field and \(W\) the ring of Witt vectors on \(k\). In part I (loc. cit.) we have constructed (for \(X\) a flat quasi-projective scheme over \(W)\) \(p\)-adic regulators \[ c_{i,j} : K_ j (X) \to H^{2i-j} (X,s_ \infty (i)_ X) \] by mimicking Beilinson’s construction of higher regulators but using some “syntomic” sheaves \(s_ \infty (i)_ X\) introduces in their studies of Hodge-Tate conjecture by Fontaine-Messing in place of Deligne’s sheaves \(\mathbb{Z} (i)\) used by Beilinson. The paper gives the computation of the image by these \(p\)-adic regulators, more precisely by \(c_{i,2i - 1}\) \((i \geq 2)\) of some famous elements constructed by Beilinson in \(K_{2i - 1} (W) \otimes \mathbb{Q}\). The construction of these elements is usually done by using relative \(K\)-theory of affine schemes and it is necessary, for computational purpose, to factorize our construction of \(p\)-adic regulators by rigid regulators using rigid variants \(s(i)_{X,rig}\) of the sheaves \(s_ \infty (i)_ X\). These sheaves \(s_{rig} (i)_ X\) have better homotopy properties and the rigid point of view (or Monsky- Washnitzer point of view of overconvergent algebras) can be viewed here as analog of the use of De Rham complexes with log poles by Beilinson. We define these sheaves \(s(i)_{X,rig}\) and give the construction of the refined \(p\)-adic regulators (it must be noticed that p. 69, 1.7 is not sufficient as given and has to be precised). After doing this, the computation follows faithfully the classical case and the final result involves values of \(p\)-adic polylogarithms. Some applications in direction of special values of \(p\)-adic \(L\) functions of Dirichlet characters are given as well as comparisons with Deligne-Soulé elements in \(K\)-theory.
Reviewer: M.Gros (Rennes)


14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14F30 \(p\)-adic cohomology, crystalline cohomology


Zbl 0667.14006
Full Text: DOI EuDML


[1] [Ber I] Berthelot, P.: Géométrie rigide et cohomologie des variétés algébriques de caractéristiquep. Mém. Soc. Math. Fr. II. Sér.23, 7-32 (1986)
[2] [Ber II] Berthelot, P.: Mémoire sur la cohomologie rigide des variétés algébriques de caractéristiquep. Versions préliminaires. Astérisque (a paraître)
[3] [Bei I] Beilinson, A.A.: Higher regulators and values ofL-functions. English translation of Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat.24, 181-283, 2036-2070 (1984)
[4] [Bei II] Beilinson, A.A.: Polylogarithm and cyclotomic elements. (ce travail sera sans doute inclus dans un travail en commun avec P. Deligne) (Preprint)
[5] [Bl-Kat] Bloch, S.; Kato, K.: Tamagawa numbers of motives andL-functions. In: Cartier, P. et al. (eds.) Grothendieck’s Festschrift vol. II, pp. 333-400. Boston Basel Stuttgart: Birkhäuser 1992 · Zbl 0768.14001
[6] [Col] Coleman R.F.: Dilogarithms, Regulators andp-adicL functions. Invent. Math.69, 171-208 (1982) · Zbl 0516.12017
[7] [Del I] Deligne, P.: Lettre à S. Bloch du 4 Février 84
[8] [Del II] Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Ihara, Y., Ribet, K., Serre, J.-P. (eds) Galois groups over 79-1. (Publ., Math. Sci. Res. Inst. vol. 16, pp. 79-293) Berlin Heidelberg New York: Springer 1989
[9] [FM] Fontaine, J.-M., Messing, W.:p-adic periods andp-adic etale cohomology. Contemp. Math.67, 179-207 (1987)
[10] [Gill] Gillet, H.: Riemann-Roch theorems for higher algebraicK-theory. Adv. Math.40, 203-289 (1981) · Zbl 0478.14010
[11] [Gr I] Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Bull. Soc. Math. Fr.21 (1985) · Zbl 0615.14011
[12] [Gr II] Gros, M.: Régulateurs syntomiques et valeurs de fonctionsL p-adiques I (avec un appendice par Masato Kurihara). Invent. Math.99, 293-320 (1990) · Zbl 0667.14006
[13] [Grot] Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets. Dix exposés sur la cohomologie des schémas. Paris: Masson & Amsterdam: North Holland 1968
[14] [Kat] Kato, K.: Onp-adic vanishing cycles (Application of ideas of Fontaine-Messing). Adv. Stud. Pure Math.10, 207-251 (1987)
[15] [Lod] Loday, J.-L.: Symboles enK-théorie algébrique supéricure. C.R. Acad. Sci., Paris292, 863-867 (1981)
[16] [MW I] Monsky, P., Washnitzer, G.: Formal cohomology I. Ann. Math.88, 181-217 (1968) · Zbl 0162.52504
[17] [MW II] Monsky, P., Washnitzer, G.: Formal cohomology II. Ann. Math.88, 218-238 (1968) · Zbl 0162.52601
[18] [Neu] Neukirch, J.: The Beilinson conjecture for algebraic number fields. In: Coates, J., Helgason, S. (eds) Beilinson’s conjectures on special values ofL-functions. (Perspect. Math., vol. 4, pp. 193-247) Boston: Academic Press 1988
[19] [Sch] Schneider, P.: Introduction to the Beilinson’s conjectures. Même référence que [Neu], pp. 1-35
[20] [Som] Somekawa, M.: Log-syntomic regulators andp-adic polylogarithm. (Preprint 1992)
[21] [Sou I] Soulé, C.: On higherp-adic regulators. In: Friedlander, E.M., Stein, M.R. (eds.) AlgebraicK-theory. (Lect. Notes Math. vol. 854, pp. 372-401) Berlin Heidelberg New York: Springer 1981
[22] [Sou II] Soulé, C.: Eléments cyclotomiques enK-théorie. Astérisque147/148, 225-257 (1987)
[23] [Sou III] Soulé, C.:K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math.55, 251-295 (1979) · Zbl 0437.12008
[24] [VdP] Van der Put, M.: The cohomology of Monsky and Washnitzer. Bull. Soc. Math. Fr., II. Sér.23, 33-60 (1986) · Zbl 0606.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.