×

Large time and distance asymptotics of field correlation function of impenetrable bosons at finite temperature. (English) Zbl 0800.35034


MSC:

35Q40 PDEs in connection with quantum mechanics
81-XX Quantum theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Korepin, V.E.; Slavnov, N.A., The time dependent correlation function of an impenetrable Bose gas a Fredholm minor I, Commun. math. phys., 129, 103, (1990) · Zbl 0698.60095
[2] Its, A.R.; Izergin, A.G.; Korepin, V.E.; Slavnov, N.A., Differential equations for quantum correlation functions, Int. J. mod. phys. B, 4, 1003-1037, (1990) · Zbl 0719.35091
[3] Its, A.R.; Izergin, A.G.; Korepin, V.E., Physica D, 53, 187-214, (1991)
[4] Its, A.R.; Izergin, A.G.; Korepin, V.E., Temperature correlators of the impenetrable Bose as an integrable system, Commun. math. phys., 129, 205-222, (1990) · Zbl 0698.60094
[5] Its, A.R.; Izergin, A.G.; Korepin, V.E., Long distance asymptotics of temperature correlators of the impenetrable Bose gas, Commun. math. phys., 130, 471-490, (1990) · Zbl 0702.76089
[6] Jimbo, A.; Miwa, T.; Mori, Y.; Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D, 1, 80-158, (1980) · Zbl 1194.82007
[7] Lenard, A., One-dimensional impenetrable bosons in thermal equilibrium, J. math. phys., 7, 1268-1272, (1965)
[8] ()
[9] Yang, C.N.; Yang, C.P., Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction, J. math. phys., 10, 115-122, (1969) · Zbl 0987.82503
[10] Its, A.R.; Izergin, A.G.; Korepin, V.E., Correlation radius for one-dimensional impenetrable bosons, Phys. lett. A, 141, 121-124, (1989)
[11] Ablowitz, M.J.; Segur, H., Asymptotic solutions of the Korteweg-de Vries equation, Stud. appl. math., 57, 13-44, (1977) · Zbl 0369.35055
[12] Miles, J.W., The asymptotic solutions of the Korteweg-de Vries equation, Stud. appl. math., 60, 59-72, (1979) · Zbl 0412.35079
[13] Manakov, S.V., Nonlinear Fraunhofer diffraction, Zh. exp. teor. fiz., 65, 1392-1403, (1973), [in Russian]
[14] Zakharov, V.E.; Manakov, S.V., Asympototical behavior of nonlinear wave systems integrable by the inverse scattering method, Zh. exp. teor. fiz., 71, 203-215, (1976), [in Russian]
[15] Buslaev, V.S.; Sukhanov, V.V., Asymptotical behavior of solution of Korteweg-de Vries equation at large time, Zap. nauchn. semin. LOMI, 120, 35-59, (1982), [in Russian]
[16] Novokshenov, V.Yu., Asymptotics at t→∞ of solutions of the Cauchy problem for the nonlinear Schrödinger equation, Dokl. an SSSR, 251, 779-802, (1980) · Zbl 0455.35047
[17] Its, A.R., Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations, Soviet math. dokl., 24, 452-456, (1981) · Zbl 0534.35028
[18] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0299.35076
[19] Gakhov, F.D., Boundary problems, (1977), Nauka Moscow, [in Russian] · Zbl 0449.30030
[20] Faddeev, L.D.; Takhtajan, L.A., Hamiltonian methods in the theory of solitons, (1987), Springer Berlin · Zbl 1327.39013
[21] Its, A.R., “isomonodromy” solution of equations of zero curvature, Math. USSR izv., 26, 497-529, (1986) · Zbl 0657.35121
[22] Bateman, H.; Erdélyi, A., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.