×

zbMATH — the first resource for mathematics

Grey-box modelling and identification using physical knowledge and Bayesian techniques. (English) Zbl 0800.93080

MSC:
93A30 Mathematical modelling of systems (MSC2010)
62A01 Foundations and philosophical topics in statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akaike, H., A new look at statistical model identification, IEEE trans., AC-19, 716, (1974) · Zbl 0314.62039
[2] Akaike, H., A new look at the Bayes procedure, Biometrica, 65, 53-59, (1978) · Zbl 0373.62008
[3] Akaike, H., The selection of smoothness priors for lag estimation, (), 109-118
[4] Aken, P.A.van, Constrained identification using physical knowledge, ()
[5] Bard, Y., ()
[6] Box, G.E.P.; Tiao, G.C., ()
[7] Casti, J.L., ()
[8] DeGroot, M.H., ()
[9] Djavdan, P.; Tulleken, H.J.A.F.; Voetter, M.H.; Verbruggen, H.B.; Olsder, G.J., Probabilistic robust controller design, (), 2164-2174
[10] Doyle, J.C.; Glover, K.; Khargonekar, P.M.; Francis, B.A., State-space solutions to standard H2 and H∞ control problems, IEEE trans., AC-34, 831, (1989)
[11] Eykhoff, P., ()
[12] Franklin, G.F.; Powell, J.D., ()
[13] Gertler, J., A constrained minimum variance input-output estimator for linear dynamic systems, Automatica, 15, 353-358, (1979) · Zbl 0406.93056
[14] Goodwin, G.C.; Payne, R.L., ()
[15] Goodwin, G.C.; Sin, K.S., (), Sc. Series
[16] Goodwin, G.C.; Salgado, A stochastic embedding approach for quantifying uncertainty in the estimation of restricted complexity models, Int. J. adaptive control and signal proc, 3, 333-356, (1989) · Zbl 0733.93070
[17] Jury, E.I., ()
[18] J∅rgensen, S.B.; Goldschmidt, L.; Hallager, L., Sparse process modelling for robust adapative surveillance and control of a binary distillation column, IFAC adaptive control of chemical process, 184, (1985), Frankfurt
[19] Kwakernaak, H., A polynomial approach to minimax frequency domain optimization of multivariable feedback systems, Int. J. contr., 44, 117-156, (1986) · Zbl 0678.93003
[20] Liew, C.K., Inequality constrained least-squares estimation, J. am. stat. association, 71, 746-751, (1976) · Zbl 0342.62037
[21] Ljung, L.; Söderström, T., ()
[22] Nemir, D.C.; Kashyap, R.L., Certainty equivalence and the minimax principle in self-tuning control, IEEE trans AC, 6, 587, (1986) · Zbl 0591.93037
[23] Peeters, R.L.M., Constrained least-squares estimation of ARLMAX models, () · Zbl 1131.58302
[24] Peterka, V., Bayesian approach to system identification, (), 239-304
[25] Press, S.J., ()
[26] Shieh, L.S.; Sacheti, S., A matrix in the block Schwarz form and the stability of matrix polynomials, Int. J. control, 25, 245-259, (1978) · Zbl 0377.93006
[27] Shieh, L.S.; Mehio, M.M.; Dib, H.M., Stability of the second-order matrix polynomial, IEEE trans AC, 32, 231-233, (1987) · Zbl 0607.34048
[28] Söderström, T.; Stoica, P., ()
[29] Tulleken, H.J.A.F., A multivariable adaptive forgetting strategy for on-line identification in a self-tuning controller, J. a, 28, 4, (1987)
[30] Tulleken, H.J.A.F., Grey-box mod. & identification using physical knowledge and Bayesian techniques, (), 591-598
[31] Tulleken, H.J.A.F., Generalized binary noise test-signal concept for improved identification-experiment design, Automatica, 26, 37-49, (1990) · Zbl 0716.93055
[32] Tulleken, H.J.A.F., ()
[33] Wahlberg, B.; Ljung, L., Design variables for bias distribution in transfer function estimation, IEEE trans. AC, 2, 134, (1986) · Zbl 0582.93065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.