×

A method for designing a stabilizing control for a class of uncertain linear delay systems. (English) Zbl 0800.93951


MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
34A40 Differential inequalities involving functions of a single real variable
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Leitmann, ”On the efficacy of nonlinear control in uncertain linear systems”J. of Dynam. Syst., Meas., Contr., vol. 102, no. 6, 1981. · Zbl 0473.93055
[2] B. R. Barmish and G. Leitmann, ”On ultimate boundedness control of uncertain systems in the absence of matching assumptions”,IEEE Trans. on Automat. Contr., vol. AC-27 no. 1, Feb. 1982. · Zbl 0469.93043
[3] T. Amemiya, ”On the global asymptotic stability of off-diagonally monotone dynamical systems”,IEEE Trans. CAS, vol. 114, no. 12, 1985. · Zbl 0583.93051
[4] T. Amemiya, ”Stability analysis of nonlinearly interconnected systems-application of M-functions”,J. Math. Anal. Appl., vol. 114, no. 1, 1986.
[5] K. Akazawa, T. Amemiya, and H. Tokumaru, ”Further conditions for the delay-independent stabilization of linear systems”,Int. J. of Contr., vol. 46, no. 4, 1987. · Zbl 0628.93050
[6] T. Amemiya, K. Akazawa, and H. Tokumaru, ”Delay-independent stabilization and decay rate assignability of linear systems with limited measurable state variables”,Int. J. of Contr., vol. 47, no. 1, 1988. · Zbl 0632.93059
[7] T. Amemiya, ”Delay-independent stability of higher-order systems”,Int. J. of Contr., vol. 50, no. 1, 1989. · Zbl 0683.93065
[8] G. Leitmann and S. Pandey, ”A controller for a class of mismatched uncertain systems”Proc. 28th IEEE CDC, 1989.
[9] G. Leitmann and S. Pandey, ”Aircraft control under conditions of windshear”,Contr. and Dynam. Syst., vol. 24, (ed. by G.T. Leondes), Academic Press, 1989. · Zbl 0709.93557
[10] C. S. Lee and G. Leitmann, ”Continuous feedback guaranteeing uniform ultimate boundedness for uncertain linear delay systems: An application to river pollution control”,Comput. Math. Applic., vol 16, no. 10/11, 1988. · Zbl 0673.93052
[11] A. Thowsen, ”Uniform ultimate boundedness of the solutions of uncertain dynamic delay systems with state-dependent and memoryless feedback control”,Int. J. of Contr., vol. 37, no. 5, 1983. · Zbl 0511.93052
[12] H. Tokumaru, N. Adachi, and T. Amemiya, ”Macroscopic stability of interconnected systems”,Preprint of 6th IFAC Congress, no. 44.4, 1975.
[13] N. N. Krasovkii,Stability of Motion. Stanford Univ. Press, 1963.
[14] V. Lakshmikantham and S. Leera,Differential and Integral Inequalities. Academic Press, 1969.
[15] A. Haranay,Differential Equations. Academic Press, 1966.
[16] J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970. · Zbl 0241.65046
[17] Y. Yu, ”On stabilizing uncertain delay systems”,J. Optim. Theory Appl., vol. 41, no 3, 1983. · Zbl 0501.93051
[18] E. Cheres, S. Gutman, and Z.I. Palmor, ”Stabilization of uncertain dynamic systems including state delays”,IEEE Trans. on Automat. Contr. vol. AC-34, no. 11, 1989. · Zbl 0693.93059
[19] K. Weis, ”Audratic stability of linear systems with structural independent time-varying uncertainties”,IEEE Trans. on Automat. Contr., vol. 35, no. 3, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.