Szalay, László A discrete iteration in number theory. (Hungarian. English, German summaries) Zbl 0801.11011 Berzsenyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8(3), 71-91 (1992). For a positive integer \(M\) the paper investigates the sequences \(x_1, x_2, x_3,\dots\) of nonnegative integers, where \(0\leq x_i< M\) and \(x_{n+1}\equiv x_n^2\pmod M\) for \(n\geq 1\). These sequences are obviously periodic for any initial term \(x_1\). The author shows many properties of the sequences using the elementary properties of congruences. Graph representations of the results are also presented. Reviewer: P.Kiss (Eger) Cited in 14 Documents MSC: 11B50 Sequences (mod \(m\)) 11A07 Congruences; primitive roots; residue systems 05C25 Graphs and abstract algebra (groups, rings, fields, etc.) Keywords:iteration; residue classes; cycles; periodic sequences; congruences PDF BibTeX XML Cite \textit{L. Szalay}, Berzsenyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8(3), 71--91 (1992; Zbl 0801.11011) OpenURL