×

An algebraic interpretation of the Laplace transform and of transfer matrices. (Une interprétation algébrique de la transformation de Laplace et des matrices de transfert.) (French) Zbl 0802.93010

Summary: The tensor product of the module of a linear system with the quotient field of the ring of linear differential operators is a vector space where, even in the time-varying case, a (formal) Laplace transform and the transfer matrix are most naturally defined. Several classic problems are examined in this algebraic setting: the relationship between left (right) coprime matrix decomposition and controllability (observability), the state-variable canonical realization, the transfer algebra with respect to parallel and series connections, the input-output inversion, and model matching.

MSC:

93B17 Transformations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artin, E., Geometric Algebra, Algèbre géométrique (1962), Interscience: Interscience New York: Gauthier-Villars: Interscience: Interscience New York: Gauthier-Villars Paris, traduction française: · Zbl 0077.02101
[2] Bourbaki, N., Algèbre (1970), Hermann: Hermann Paris, (chap. 1 à 3) · Zbl 0211.02401
[3] Blomberg, H.; Ylinen, R., Algebraic Theory for Multivariable Linear Systems (1983), Academic: Academic London · Zbl 0556.93016
[4] Cohn, P. M., Free Rings and Their Relations (1985), Academic: Academic London · Zbl 0659.16001
[5] Fliess, M., Automatique et corps différentiels, Forum Math., 1, 227-238 (1989) · Zbl 0701.93048
[6] Fliess, M., Generalized linear systems with lumped or distributed parameters and differential vector spaces, Internat. J. Control, 49, 1989-1999 (1989) · Zbl 0684.93001
[7] Fliess, M., Some basic structural properties of generalized linear systems, Systems Control Lett., 15, 391-396 (1990) · Zbl 0727.93024
[8] Fliess, M., A simple definition of hidden models, poles and zeros, Kybernetika, 27, 186-189 (1991) · Zbl 0746.93037
[9] Fliess, M., A remark on Willems’ trajectory characterization of linear controllability, Systems Control Lett., 19, 43-45 (1992) · Zbl 0765.93003
[10] Fliess, M., Reversible linear and nonlinear discrete-time dynamics, IEEE Trans. Automat. Control, 37, 1144-1153 (1992) · Zbl 0764.93058
[11] M. Fliess, An algebraic definition of time-varying transfer matrices, dans Proceedings of the 2nd IFAC Workshop “System Structure and Control,”; M. Fliess, An algebraic definition of time-varying transfer matrices, dans Proceedings of the 2nd IFAC Workshop “System Structure and Control,”
[12] Fliess, M.; Glad, S. T., An algebraic approach to linear and nonlinear control, dans Essays on Control: Perspectives in the Theory and its Applications, (Trentelman, H. L.; Willems, J. C. (1993), Birkhäuser: Birkhäuser Boston), 223-267, ECC-93 · Zbl 0838.93021
[13] Fliess, M.; Lévine, J.; Rouchon, P., Index of an implicit time-varying linear differential equation: A noncommutative linear algebraic approach, Linear Algebra Appl., 186, 59-71 (1993) · Zbl 0774.34002
[14] Ilchmann, A., Time-varying linear systems and invariants of system equivalence, Internat. J. Control, 42, 759-790 (1985) · Zbl 0573.93007
[15] Ilchmann, A.; Nürnberger, I.; Schmale, W., Time-varying polynomial matrix systems, Internat. J. Control, 40, 329-362 (1984) · Zbl 0545.93045
[16] Kailath, T., Linear Systems (1980), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0458.93025
[17] Kalman, R. E., Mathematical description of linear dynamical systems, SIAM J. Control, 1, 152-192 (1963) · Zbl 0145.34301
[18] Kamen, E. W.; Hafez, K. M., Algebraic theory of linear time-varying systems, SIAM J. Control Optim., 17, 500-510 (1979) · Zbl 0411.93023
[19] Kamen, E. W.; Khargonekar, P. P.; Poola, K. R., A transfer-function approach to linear time-varying discrete-time systems, SIAM J. Control Optim., 23, 550-565 (1985) · Zbl 0626.93039
[20] Kolchin, E. R., Differential Algebra and Algebraic Groups (1973), Academic: Academic New York · Zbl 0264.12102
[21] Kučera, V., Analysis and Design of Discrete Linear Control Systems (1991), Prentice-Hall: Prentice-Hall New York
[22] Malgrange, B., Equations différentielles à coefficients polynômiaux (1991), Birkhäuser: Birkhäuser Boston · Zbl 0764.32001
[23] Perdon, A. M.; Conte, G.; Moog, C. H., Structural methods in the control of linear time-varying systems, (Grenoble, 1991), Hermès, Paris. (Grenoble, 1991), Hermès, Paris, Proceedings of the 1st European Control Conference, 1777-1780 (1991)
[24] Rudolph, J., Poursuite de modéle: une approche par l’algèbre différentielle, (Thèse (1991), Univ. Paris XI: Univ. Paris XI Orsay)
[25] Vidyasagar, M., Control System Synthesis: A Factorization Approach (1985), MIT Press: MIT Press Cambridge, Mass · Zbl 0655.93001
[26] Willems, J. C., Input-output and state-space representations of finite-dimensional linear time-invariant systems, Linear Algebra Appl., 50, 581-608 (1983) · Zbl 0507.93017
[27] Willems, J. C., Pardigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control, 36, 259-294 (1991) · Zbl 0737.93004
[28] Ylinen, R., An algebraic theory for analysis and synthesis of time-varying linear differential systems, Acta Polytech. Scand., 32 (1980) · Zbl 0475.93027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.