×

zbMATH — the first resource for mathematics

Control of nonholonomic systems via dynamic compensation. (English) Zbl 0802.93023
Summary: The problem of controlling nonholonomic systems via dynamic state feedback and its structural aspects are analyzed. Advantages and drawbacks with respect to the use of static state feedback laws are discussed. In particular, nonholonomic constraints are shown to yield possible singularities in the dynamic extension process. Nevertheless, these singularities can be avoided by the proper design of a discontinuous external control law achieving stabilization of the transformed linear system. This is illustrated through simulations for a unicycle.

MSC:
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] A. M. Bloch, N. H. McClamroch: Control of mechanical systems with classical nonholonomic constraints. Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, 1989, pp. 201-205.
[2] A.M. Bloch M. Reyhanoglu, N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Control 57 (1992), 11, 1746-1757. · Zbl 0778.93084 · doi:10.1109/9.173144
[3] R. W. Brockett: Asymptotic stability and feedback stabilization. Differential Geometric Control Theory (R. Brockett, R. S. Millmann and H.J. Sussmann, Birkhauser, Boston, MA, 1983, pp. 181-191. · Zbl 0528.93051
[4] G. Campion B. d’Andrea-Novel, G. Bastin: Structural properties of nonholonomic mechanical systems. Proc. 1st European Control Conference, Grenoble 1991, pp. 2089-2094. · Zbl 0825.93635
[5] C. Canudas de Wit, O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 57 (1992), 11, 1791-1797. · Zbl 0778.93077 · doi:10.1109/9.173153
[6] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992), 295-312. · Zbl 0760.93067 · doi:10.1007/BF01211563
[7] B. d’Andrea-Novel G. Bastin, G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 2527-2532.
[8] A. De Luca L. Lanari, G. Oriolo: Control of redundant robots on cyclic trajectories. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 500-506.
[9] J. Descusse, D. H. Moog: Dynamic decoupling for right-invertible nonlinear systems. Systems Control Lett. 8 (1987), 345-349. · Zbl 0617.93024 · doi:10.1016/0167-6911(87)90101-0
[10] M. D. Di Benedetto, J. W. Grizzle: An analysis of regularity conditions in nonlinear synthesis. Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Berlin - Heidelberg - New York 1990, pp. 843-850. · Zbl 0709.93040
[11] A. Isidori: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin - Heidelberg - New York 1989. · Zbl 0931.93005
[12] G. Lafferriere, H. J. Sussmann: Motion planning for controllable systems without drift: A preliminary report. Report SYCON-90-04, Rutgers University, N.J., July 1990.
[13] J. P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example. Report STAN-CS-90-1345, Stanford University, CA, December 1990.
[14] R. Marino: On the largest feedback linearizable subsystem. Systems Control Lett. 6 (1986), 345-351. · Zbl 0577.93030 · doi:10.1016/0167-6911(86)90130-1
[15] R. M. Murray, S. S. Sastry: Steering nonholonomic systems in chained form. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1121-1126.
[16] G. Oriolo, Y. Nakamura: Control of mechanical systems with second-order non-holonomic constraints: Underactuated manipulators. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 2394-2403.
[17] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 18 (1992), 147-158. · Zbl 0744.93084 · doi:10.1016/0167-6911(92)90019-O
[18] J.-B. Pomet B. Thuilot G. Bastin, G. Campion: A hybrid strategy for the feed- back stabilization of nonholonomic mobile robots. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 129-134.
[19] M. Reyhanoglu, N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum. Proc. 1991 AIAA Conf. on Guidance, Navigation, and Control, New Orleans 1991, pp. 1330-1340.
[20] C. Samson, K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space. Proc. 1991 IEEE Internat. Conf. on Robotics and Automation, Sacramento 1991, pp. 1136-1141.
[21] H. J. Sussmann: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 1, 158-194. · Zbl 0629.93012 · doi:10.1137/0325011
[22] H. J. Sussmann: Local controllability and motion planning for some classes of systems with drift. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1110-1114.
[23] Z. Vafa, S. Dubowsky: The kinematics and dynamics of space manipulators: The virtual manipulator approach. Internat. J. Robotics Research 9 (1990), 4, 3-21.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.