zbMATH — the first resource for mathematics

Recursively generated weighted shifts and the subnormal completion problem. (English) Zbl 0804.47028
Summary: For \(m\geq 0\), let \(\alpha_ 0,\dots,\alpha_ m\) be a finite sequence of positive numbers. We find necessary and sufficient conditions for the existence of a subnormal unilateral weighted shift whose first \((m+1)\) weights are \(\alpha_ 0,\dots,\alpha_ m\). We explicitly construct such a subnormal “completion” \(W_{\widehat\alpha}\), with weights \(\{\widehat\alpha_ n\}^ \infty_{n=0}\) and “moments” \(\gamma_ 0= 1\), \(\gamma_ n= \alpha^ 2_ 0\cdot\cdots\cdot \alpha^ 2_{n-1}\) \((n\geq 1)\), such that:
(i) There exists a finitely atomic probability measure \(\mu\) on \([0,+\infty)\) satisfying \(\int t^ n d\mu= \gamma_ n\) \((0\leq n\leq m+1)\);
(ii) \(W_{\widehat\alpha}\) is the unique minimal-norm subnormal completion of \(\alpha\), and the moments of \(W_{\widehat\alpha}\) are minimal relative to the moments of any other subnormal completion;
(iii) The moments of \(W_{\widehat\alpha}\) satisfy a linear recursion relation.
Moreover, every subnormal shift is the norm limit of recursively generated ones.

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B20 Subnormal operators, hyponormal operators, etc.
47A57 Linear operator methods in interpolation, moment and extension problems
44A60 Moment problems
47B47 Commutators, derivations, elementary operators, etc.
Full Text: DOI
[1] [AbK] N.I. Ahiezer and M. Krein, Some Questions in the Theory of Moments, Transl. Math. Monographs, vol. 2, American Math. Soc., Providence, 1962.
[2] [Akh] N.I. Akhiezer, The Classical Moment Problem, Hafner Publ. Co., New York, 1965.
[3] [Ath] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103(1988), 417-423. · Zbl 0657.47028 · doi:10.1090/S0002-9939-1988-0943059-X
[4] [Atk] K. Atkinson, An Introduction to Numerical Analysis, Wiley, New York, 1978.
[5] [BeM] C. Berg and P.H. Maserick, Polynomially positive definite sequences, Math. Ann. 259(1982), 487-495. · Zbl 0486.44004 · doi:10.1007/BF01466054
[6] [Cla] K. Clancey, Seminormal operators, Lecture Notes in Math., vol. 742, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
[7] [Con] J.B. Conway, Subnormal Operators, Pitman Publ. Co., London, 1981.
[8] [Cul] R.E. Curto, Quadratically hyponormal weighted shifts, Int. Eq. Op. Th. 13(1990), 49-66. · Zbl 0702.47011 · doi:10.1007/BF01195292
[9] [Cu2] R.E. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51(1990), Part II, 69-91. · Zbl 0713.47019
[10] [CuF1] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17(1991), 603-635. · Zbl 0757.44006
[11] [CuF2] R. Curto and L. Fialkow, Quadratic hyponormality of recursively generated shifts, preprint 1992.
[12] [CMX] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Th.: Adv. Appl. 35(1988), 1-22.
[13] [CuP1] R. Curto and M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. 25(1991), 373-378. · Zbl 0758.47027 · doi:10.1090/S0273-0979-1991-16079-9
[14] [CuP2] R. Curto and M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal., to appear. · Zbl 0817.47026
[15] [Dou] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc. 17(1966), 413-415. · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
[16] [Fan] P. Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92(1984), 271-272. · Zbl 0509.47023 · doi:10.1090/S0002-9939-1984-0754718-2
[17] [Hal] P.R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76(1970), 887-933. · Zbl 0204.15001 · doi:10.1090/S0002-9904-1970-12502-2
[18] [Ioh] I.S. Iohvidov, Hankel and Toeplitz Matrices and Forms: Algebraic Theory, Birkhäuser-Verlag, Boston, 1982.
[19] [Jos1] A. Joshi, Hyponormal polynomials of monotone shifts, Ph. D. dissertation, Purdue University, 1971.
[20] [Jos2] A. Joshi, Hyponormal polynomials of monotone shifts, Indian J. Pure Appl. Math. 6(1975), 681-686. · Zbl 0355.47014
[21] [KoL] I. Koltracht and P. Lancaster, A definiteness test for Hankel matrices and their lower submatrices, Computing 39 (1987), 19-26. · Zbl 0608.15012 · doi:10.1007/BF02307710
[22] [KrN] M.G. Krein and A.A. Nudel’man, The Markov Moment Problem and Extremal Problems, Transl. Math. Monographs, vol. 50, American Math. Soc., Providence, 1977.
[23] [MaP] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Operator Theory: Adv. Appl., vol. 39, Birkhäuser-Verlag, 1989.
[24] [McCP] S. Cullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107(1989), 187-195. · Zbl 0677.47018 · doi:10.1090/S0002-9939-1989-0972236-8
[25] [Nar] F.J. Narcowich, R-operators II. On the approximation of certain operator-valued analytic functions and the Hermitian moment problem, Indiana Univ. Math. J. 26(1977), 483-513. · Zbl 0351.41012 · doi:10.1512/iumj.1977.26.26038
[26] [Put] C.R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Ergeb. der Math. und ihrer Grenz., vol. 36, Springer-Verlag, New York, 1967.
[27] [Sar] D. Sarason, Moment problems and operators in Hilbert space, Moments in Math., Proc. Symposia Applied Math., vol. 37, Amer. Math. Soc., 1987, pp. 54-70.
[28] [Shi] A. Shields, Weighted shift operators and analytic function theory, Math. Surveys 13(1974), 49-128.
[29] [ShT] J.A. Shohat and J.D. Tamarkin, The Problem of Moments, Math. Surveys I, American Math. Soc., Providence, 1943. · Zbl 0063.06973
[30] [Smu] J.L. Smul’jan, An operator Hellinger integral (Russian), Mat. Sb. 91 (1959), 381-430.
[31] [Sta] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17(1966), 367-379. · Zbl 0189.43902
[32] [Sto] M.H. Stone, Linear Transformations in Hilbert Space, Amer. Math. Soc., New York, 1932.
[33] [Xia] D. Xia, Spectral Theory of Hyponormal Operators, Operator Theory: Adv. Appl., vol. 10, Birkhäuser-Verlag, 1983. · Zbl 0523.47012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.