×

The waveform relaxation method for systems of differential/algebraic equations. (English) Zbl 0804.65065

A parallel waveform relaxation algorithm for the simulation of generalized high-index differential algebraic systems is derived. Numerical results are also given.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65Y05 Parallel numerical computation
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hill, D. J.; Mareels, I. M.Y., Stability theory for differential/algebraic systems with applications to power systems, IEEE Transactions on Circuits and Systems, 37, 1416-1423 (1990) · Zbl 0717.93044
[2] Verghese, G. C.; Levy, B. C.; Kailath, T., A generalized state-space for singular systems, IEEE Transactions on Automatic Control, 811-831 (1981) · Zbl 0541.34040
[3] Kokotovic, P. V.; O’Malley, R. E.; Sannuti, P., Singular perturbations and order reduction in control theory—An overview, Automatica, 12, 123-132 (1976) · Zbl 0323.93020
[4] Campbell, S. L., The numerical solution of singular systems arising in control problems, Proceedings of the 1989 American Control Conference (1989), Pittsburgh, PA
[6] Spong, M. W.; Vidyasagar, M., Robot Dynamics and Control (1989), John Wiley and Sons: John Wiley and Sons New York
[7] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1989), Elsevier Science Publishing Co: Elsevier Science Publishing Co New York · Zbl 0699.65057
[8] Campbell, S. L., The numerical solution of higher index linear time varying singular systems of differential equations, SIAM Journal of Scientific and Statistical Computing, 6, 2, 334-348 (1985) · Zbl 0664.65084
[9] Gear, C. W.; Petzold, L. R., ODE methods for the solution of differential/algebraic systems, SIAM Journal of Numerical Analysis, 21, 4, 716-728 (1984) · Zbl 0557.65053
[10] Gear, C. W.; Gupta, G. K.; Leimkuhler, B., Automatic integration of Euler-Lagrange equations with constraints, Journal of Computational and Applied Mathematics, 12/13, 77-90 (1985) · Zbl 0576.65072
[11] Leimkuhler, B. J., Error estimates for differential-algebraic equations, (Master’s Thesis (1986), University of Illinois: University of Illinois Urbana, IL) · Zbl 0701.70003
[12] Leimkuhler, B. J., Approximation methods for the consistent initialization of differential-algebraic equations, (Report No. UIUCDCS-R-88-1450 (1988), University of Illinois: University of Illinois Urbana, IL) · Zbl 0725.65076
[13] Lötstedt, P.; Petzold, L., Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas, Mathematics of Computation, 46, 174, 491-516 (1986) · Zbl 0601.65060
[14] Mack, I. M., Block implicit one-step methods for solving smooth and discontinuous systems of differential/algebraic equation, (Ph.D. Dissertation (1986), Harvard University: Harvard University Cambridge, MA)
[15] Petzold, L.; Lötstedt, P., Numerical solution of nonlinear differential equations with algebraic constraints II: Practical implications, SIAM Journal of Scientific Statistical Computation, 7, 3, 720-733 (1986) · Zbl 0632.65086
[16] Chua, L. O.; Lin, P., Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques (1975), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0358.94002
[17] White, J. K.; Sangiovanni-Vincentelli, A., Relaxation Techniques for the Simulation of VLSI Circuits (1987), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA
[18] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York · Zbl 0241.65046
[19] Lelarasmee, E.; Ruehli, A. E.; Sangiovanni-Vincentelli, A. L., The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, CAD-1, 3, 131-144 (1982)
[20] Nevanlinna, O.; Odeh, F., Remarks on the convergence of the waveform relaxation method, Numer. Funct. Anal. Optimiz., 9, 435-445 (1987) · Zbl 0632.65082
[21] Crow, M. L., Waveform relaxation methods for the simulation of systems of differential/algebraic equations with applications to electric power systems, (Ph.D. Dissertation (1990), University of Illinois: University of Illinois Urbana, IL) · Zbl 0804.65065
[22] Nevanlinna, O., Remarks on Picard-Lindelöf iteration: Part I, BIT, 29, 328-346 (1988) · Zbl 0673.65037
[23] Nevanlinna, O., Remarks on Picard-Lindelöf iteration: Part II, BIT, 29, 535-562 (1988) · Zbl 0697.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.