×

\(\mathfrak H_ \infty\) design of general multirate sampled-data control systems. (English) Zbl 0806.93038

Summary: Direct digital design of general multirate sampled-data systems is considered. To tackle causality constraints, a new and natural framework is proposed using nest operators and nest algebras. Based on this framework explicit solutions to the \({\mathcal H}_ \infty\) and \({\mathcal H}_ 2\) multirate control problems are developed in the frequency domain.

MSC:

93C57 Sampled-data control/observation systems
93C62 Digital control/observation systems
93B36 \(H^\infty\)-control
93C55 Discrete-time control/observation systems
93B50 Synthesis problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Al-Rahmani, H.M.; Franklin, G.F., A new optimal multirate control of linear periodic and time-invariant systems, IEEE trans. automat. control, AC-35, 406-415, (1990) · Zbl 0705.93035
[2] Anderson, B.D.O.; Moore, J.B., Time-varying feedback laws for decentralized control, IEEE trans. automat. control, AC-26, 1133-1139, (1981) · Zbl 0473.93007
[3] Araki, M.; Yamamoto, K., Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion, IEEE trans. automat. control, AC-30, 145-154, (1986)
[4] Arveson, W., Interpolation problems in nest algebras, J. functional analysis, 20, 208-233, (1975) · Zbl 0309.46053
[5] Bamieh, B.; Pearson, J.B., A general framework for linear periodic systems with application to \(H\)_{∞} sampled-data control, IEEE trans. automat. control, AC-37, 418-435, (1992) · Zbl 0757.93020
[6] Bamieh, B.; Pearson, J.B., The \(H\)_{2} problem for sampled-data systems, Systems and control letters, 19, 1-12, (1992) · Zbl 0765.93050
[7] Berg, M.C.; Amit, N.; Powell, J., Multirate digital control system design, IEEE trans. automat. control, 33, 1139-1150, (1988) · Zbl 0711.93041
[8] Chen, T.; Francis, B.A., \(H\)_{2}-optimal sampled-data control, IEEE trans. automat. control, AC-36, 387-397, (1991) · Zbl 0748.93063
[9] Chen, T.; Francis, B.A., Linear time-varying \(H\)_{2}-optimal control of sampled-data systems, Automatica, 27, 963-974, (1991) · Zbl 0748.93061
[10] Colaneri, P.; Scattolini, R.; Schiavoni, N., Stabilization of multirate sampled-data linear systems, Automatica, 26, 377-380, (1990) · Zbl 0712.93046
[11] Davis, C.; Kahan, M.M.; Weinsberger, H.F., Norm-preserving dilations and their applications to optimal error bounds, SIAM J. numerical analysis, 19, 445-469, (1982) · Zbl 0491.47003
[12] Davidson, K.R., Nest algebras, () · Zbl 0994.47072
[13] Feintuch, A.; Francis, B.A., Uniformly optimal control of linear feedback systems, Automatica, 21, 563-574, (1985) · Zbl 0574.93032
[14] Feintuch, A.; Khargonekar, P.P.; Tannenbaum, A., On the sensitivity minimization problem for linear time-varying periodic systems, SIAM J. control and optimization, 24, 1076-1085, (1986) · Zbl 0624.93021
[15] Francis, B.A., A course in \(H\)_{∞} control theory, (1987), Springer-Verlag New York
[16] Francis, B.A.; Georgiou, T.T., Stability theory for linear time-invariant plants with periodic digital controllers, IEEE trans. automat. control, AC-33, 820-832, (1988) · Zbl 0651.93053
[17] Georgiou, T.T.; Khargonekar, P.P., A constructive algorithm for sensitivity optimization of periodic systems, SIAM J. control and optimization, 25, 334-340, (1987)
[18] Glover, K.; Limebeer, D.J.N.; Doyle, J.C.; Kasenally, E.M.; Safonov, M.G., A characterization of all solution to the four block general distance problem, SIAM J. control and optimization, 29, 283-324, (1991) · Zbl 0736.93015
[19] Hagiwara, T.; Araki, M., Design of a stable feedback controller based on the multirate sampling of the plant output, IEEE trans. automat. control, 33, 812-819, (1988) · Zbl 0648.93043
[20] Hara, S.; Kabamba, P.T., Worst case analysis and design of sampled-data control systems, (), 202-203
[21] Hayakawa, Y.; Yamamoto, Y.; Hara, S., \(H\)_{∞} type problem for sampled-data control system—a solution via minimum energy characterization, (), 463-468
[22] Jury, E.I.; Mullin, F.J., The analysis of sampled-data control systems with a periodically time-varying sampling rate, IRE trans. automat. contrl, 4, 15-21, (1959)
[23] Kalman, R.E.; Bertram, J.E., A unified approach to the theory of sampling systems, J. franklin inst., 267, 405-436, (1959) · Zbl 0142.07004
[24] Khargonekar, P.P.; Sivashankar, N., \(H\)_{2} optimal control for sampled-data systems, Systems and control letters, 18, 627-631, (1992) · Zbl 0763.93056
[25] Khargonekar, P.P.; Poolla, K.; Tannenbaum, A., Robust control of linear time-invariant plants using periodic compensation, IEEE trans. automat. control, AC-30, 1088-1096, (1985) · Zbl 0573.93013
[26] Kranc, G.M., Input-output analysis of multirate feedback systems, IRE trans. automat. control, 3, 21-28, (1957)
[27] Longhi, S., Necessary and sufficient conditions for the complete reachability and obsservability of multirate sampled-data systems, (), 1944-1945
[28] Meyer, D.G., A parametrization of stabilizing controllers for multirate sampled-data systems, IEEE trans. automat. control, AC-35, 233-236, (1990) · Zbl 0705.93031
[29] Meyer, D.G., A new class of shift-varying operators, their shift-invariant equivalents, and multirate digital systems, IEEE trans. automat. control, AC-35, 429-433, (1990) · Zbl 0705.93013
[30] Meyer, D.G., Cost translation and a lifting approach to the multirate LQG problem, IEEE trans. automat. control, AC-37, 1411-1415, (1992) · Zbl 0755.93072
[31] Meyer, R.A.; Burrus, C.S., A unified analysis of multirate and periodically time-varying digital filters, IEEE trans. circuits and systems, 22, 162-168, (1975)
[32] Olbrot, A.W., Robust stabilization of uncertain systems by periodic feedback, Int. J. control, 45, 747-758, (1987) · Zbl 0616.93063
[33] Parrott, S., On a quotient norm and the sz.-Nagy-foias lifting theorem, J. functional analysis, 30, 311-328, (1978) · Zbl 0409.47004
[34] Qiu, L.; Chen, T., \(H\)_{2} and \(H\)∞ designs of multirate sampled-data systems, (), Condensed version in
[35] Ravi, R.; Khargonekar, P.P.; Minto, K.D.; Nett, C.N., Controller parametrization for time-varying multirate plants, IEEE trans. automat. control, AC-35, 1259-1262, (1990) · Zbl 0719.93070
[36] Redheffer, R.M., On a certain linear fractional transformation, J. math. phys., 39, 269-286, (1960) · Zbl 0102.10402
[37] Sezer, M.E.; Siljak, D.D., Decentalized multirate control, IEEE trans. automat. control, AC-35, 60-65, (1990) · Zbl 0708.93054
[38] Sun, W.; Nagpal, K.M.; Khargonekar, P.P., \(H\)_{∞} control and filtering with sampled measurements, ()
[39] Sun, W.; Nagpal, K.M.; Khargonekar, P.P.; Poolla, K.R., Digital control systems: \(H\)_{∞} controller design with a zero-order hold function, (), 475-480
[40] Tadmor, G., Optimal \(H\)_{∞} sampled-data control in continuous time systems, () · Zbl 0751.93063
[41] Toivonen, H.T., Sampled-data control of continuous-time systems with an \(H\)_{∞} optimality criterion, Automatica, 28, 45-54, (1992) · Zbl 0746.93062
[42] Wang, S.H., Stabilization of decentralized control systems via time-varying controllers, IEEE trans. automat. control, AC-27, 741-744, (1982) · Zbl 0478.93043
[43] Voulgaris, P.G.; Bamieh, B., Optimal \(H\)_{∞} and \(H\)2 control of hybrid multirate systems, Systems and control letters, 20, 249-261, (1993) · Zbl 0781.93062
[44] Voulgaris, P.G.; Dahleh, M.A.; Valavani, L.S., \(H\)_{∞} and \(H\)2 optimal controllers for periodic and multi-rate systems, Automatica, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.