×

Asymptotic inference for semimartingale models with singular parameter points. (English) Zbl 0807.62062

The author studies the asymptotic inference for stochastic processes using semimartingale models. In particular he discusses singularities in the parameter space. The paper clarifies some of the reasons for singular points for differentiable experiments in this context.
The basic setup is the following: the law of the semimartingale depends on a \(k\)-dimensional Euclidean parameter \(\vartheta\) in such a way that the triplet of the local characteristics, which depends on the unknown parameter \(\vartheta\), is differentiable, and so the score martingale exists. Using the predictable bracket of the score martingale the author derives a local quadratic approximation for the likelihood. With the help of this approximation he then studies singularity points in the parameter space. He then gives a criterion for the quadratic approximation to be mixed normal (and then there is no singularity at this point). This criterion is also based on the bracket of the score martingale.
Next he studies the limiting distributions of certain estimators. The paper ends with examples dealing with continuous diffusion processes, diffusions with jumps and point processes. Since the author works with quasi-left continuous semimartingales, the results obtained cannot be applied to discrete time models.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
62M09 Non-Markovian processes: estimation
60G48 Generalizations of martingales
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arato, M., Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, (Lecture Notes in Control and Information Sciences, Vol. 45 (1982), Springer: Springer Berlin) · Zbl 0544.93060
[2] Basawa, I. V.; Scott, D. J., Asymptotic Optimal Inference for Non-Ergodic Models, (Lecture Notes in Statistics, Vol. 17 (1983), Springer: Springer New York) · Zbl 0494.62074
[3] Chan, N. H.; Wei, C. Z., Asymptotic inference for nearly nonstationary AR(1) processes, Ann. Statist., 15, 1050-1063 (1987) · Zbl 0638.62082
[4] Chan, N. H.; Wei, C. Z., Limiting distributions of least squares estimates of unstable autoregressive processes, Ann. Statist., 16, 367-401 (1988) · Zbl 0666.62019
[5] Cinlar, E.; Pinsky, M., A stochastic integral in storage theory, Z. Wahrsch. verw. Gebiete, 17, 227-240 (1971) · Zbl 0204.50204
[6] Comets, F.; Gidas, B., Asymptotics of maximum likelihood estimators for the Curie-Weiss model, Ann. Statist., 19, 557-578 (1991) · Zbl 0749.62018
[7] Davies, R., Asymptotic inference when the amount of information is random, (Le Cam, L.; Olshen, R., Proc. Berkeley Conf. in Honor of J. Neyman and J. Kiefer, Vol. 2 (1985), Wadsworth: Wadsworth Monterey, CA), 841-864 · Zbl 1373.62435
[8] Feigin, P. D., Maximum likelihood estimation for continuous time stochastic processes, Adv. Appl. Probab., 8, 712-736 (1976) · Zbl 0355.62086
[9] Feigin, P. D., Some comments concerning a curious singularity, J. Appl. Probab., 16, 440-444 (1979) · Zbl 0409.62082
[10] Greenwood, P. E.; Wefelmeyer, W., Asymptotic minimax results for stochastic processes with critical points, Stochastic Process. Appl., 44, 107-116 (1993) · Zbl 0783.62064
[11] Hayashi, T., Local asymptotic normality in self-correcting point processes, (Matusita, K., Statistical Theory and Data Analysis II (1988), North-Holland: North-Holland Amsterdam), 551-558 · Zbl 0737.62021
[12] Inagaki, N.; Hayashi, T., Parameter estimation for the simple self-correcting point process, Ann. Inst. Statist. Math., 42, 89-98 (1990) · Zbl 0703.62090
[13] Jacod, J., Calcul Stochastique et problèmes de Martingales, (Lecture Notes in Maths, Vol. 714 (1979), Springer: Springer Berlin) · Zbl 0414.60053
[14] Jacod, J.; Shiryaev, A. N., Limit Theorems for Stochastic Processes (1987), Springer: Springer Berlin · Zbl 0830.60025
[15] Jacubowski, A.; Mémin, J.; Pages, G., Convergence en loi des suites d’intégrales stochastique sur l’espace \(D^1\) de Skorokhod, Probab. Theory Rel. Fields, 81, 111-137 (1989) · Zbl 0638.60049
[16] Jeganathan, P., An extension of a result of L. Le Cam concerning asymptotic normality, Sankhyā, Ser. A., 42, 146-160 (1980) · Zbl 0497.62022
[17] Jeganathan, P., On the asymptotic behavior of least squares estimators in AR time series with roots near the unit circle, Econometric Theory, 7, 269-306 (1987)
[18] Jeganathan, P., Some aspects of asymptotic theory with applications to time series models, (Technical Report (1988), University of Michigan: University of Michigan Ann Arbor) · Zbl 0985.62070
[19] Le Cam, L., Asymptotic Methods in Statistical Decision Theory (1986), Springer: Springer New York · Zbl 0605.62002
[20] Le Cam, L.; Yang, G. L., Asymptotics in Statistics (1990), Springer: Springer New York
[21] Liptser, R. S.; Shiryaev, A. N., Statistics of Random Processes, II (1978), Springer: Springer New York · Zbl 0591.60039
[22] Liptser, R. S.; Shiryaev, A. N., Theory of Martingales (1989), Kluwer: Kluwer Dordrecht · Zbl 0733.60044
[23] Luschgy, H.; Mosler, K.; Scarsini, M., Ordering regression models of Gaussian processes, Stochastic Orders and Decision under Risk. Stochastic Orders and Decision under Risk, IMS Lecture Notes — Monograph Series, Vol. 19, 207-230 (1991), Hayward, CA · Zbl 0769.62004
[24] Luschgy, H., On a singularity occuring in a self-correcting point process model, Ann. Inst. Statist. Math. (1991), (to appear)
[25] Luschgy, H., Local asymptotic mixed normality for semimartingale experiments, Probab. Theory Rel. Fields, 92, 151-176 (1992) · Zbl 0768.62067
[26] Luschgy, H., Comparison of location models for stochastic processes, Probab. Theory Rel. Fields, 93, 39-66 (1992) · Zbl 0768.62005
[27] Moran, P. A.P., A theory of dams with continuous input and a general release rule, J. Appl. Probab., 6, 88-98 (1969) · Zbl 0181.46702
[28] Ogata, Y.; Vere-Jones, D., Inference for earthquake models: a selfcorrecting model, Stochastic Process. Appl., 17, 337-347 (1984) · Zbl 0543.62068
[29] Phillips, P. C.B., Towards a unified asymptotic theory for autoregression, Biometrika, 74, 535-547 (1987) · Zbl 0654.62073
[30] Phillips, P. C.B., Multiple regression with integrated time series, (Prabhu, N. U., Statistical Inference from Stochastic Processes. Contemporary Math., Vol. 80 (1988), Amer. Mathematical Soc: Amer. Mathematical Soc providence, RI), 79-105 · Zbl 0599.62103
[31] Sørensen, M., Likelihood methods for diffusions with jumps, (Prabhu, N. U.; Basawa, I. V., Statistical Inference in Stochastic Processes (1991), Marcel Dekker: Marcel Dekker New York), 67-105
[32] Sriram, T. N.; Basawa, I. V.; Huggins, R. M., Sequential estimation for branching processes with immigration, Ann. Statist., 19, 2232-2243 (1991) · Zbl 0850.62636
[33] Strasser, H., Mathematical Theory of Statistics (1985), De Gruyter: De Gruyter Berlin
[34] Swenson, A. R., A note on statistical inference for a class of diffusions and approximate diffusions, Stochastic Process. Appl., 19, 111-123 (1985)
[35] Wei, C. Z.; Winnicki, J., Estimation of the means in the branching process with immigration, Ann. Statist., 18, 1757-1773 (1990) · Zbl 0736.62071
[36] White, J. S., The limiting distribution of the serial correlation coefficient in the explosive case, Ann. Math. Statist., 29, 1188-1197 (1958) · Zbl 0099.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.