×

zbMATH — the first resource for mathematics

BiCGstab(\(l\)) and other hybrid Bi-CG methods. (English) Zbl 0810.65027
Various implementations of the modification \(\text{BiCGstab}(l)\) of the bi-conjugate gradient method for the solution of a system of linear algebraic equations with a non-singular \(n \times n\) matrix are studied. The basis of these method forms various investigations of the BiCG part and the polynomial part. The second one is used for further reduction of the BiCG residue and for improving the numerical stability. Both parts are studied in detail. The theory is illustrated by numerical examples.
Reviewer: J.Zítko (Praha)

MSC:
65F10 Iterative numerical methods for linear systems
Software:
Bi-CG; BiCGstab; CGS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Z. Bai, D. Hu and L. Reichel, A Newton basis GMRES implementation, University of Kentucky, Technical Report 91-03 (1991). · Zbl 0818.65022
[2] J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comp. 31 (1977) 162–179. · Zbl 0355.65023 · doi:10.1090/S0025-5718-1977-0428694-0
[3] R. Fletcher, Conjugate gradient methods for indefinite systems, in:Proc. Dundee Biennial Conf. on Numerical Analysis, ed. G. Watson (Springer, New York, 1975). · Zbl 0326.65033
[4] R.W. Freund and N.M. Nachtigal, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, RIACS, NASA Ames Research Center, Technical Report 91.18 (1991).
[5] G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed. (The Johns Hopkins University Press, Baltimore and London, 1989). · Zbl 0733.65016
[6] M.H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comput. 14 (1993) 1020–1033. · Zbl 0837.65031 · doi:10.1137/0914062
[7] C. Lanczos, Solution of systems of linear equations by minimized iteration, J. Res. Nat. Bur. Stand. 49 (1952) 33–53.
[8] F. Leja, Sur certaines suites liées aux ensemble plans et leur application à la representation conforme, Ann. Polon. Math. 4 (1957) 8–13. · Zbl 0089.08303
[9] T.A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math. 28 (1977) 307–327. · Zbl 0361.65024 · doi:10.1007/BF01389971
[10] N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES algorithm for non-symmetric linear systems, SIMAX 13 (1992) 796–825. · Zbl 0757.65035
[11] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput. 14 (1993) 461–469. · Zbl 0780.65022 · doi:10.1137/0914028
[12] Y. Saad and M.H. Schulz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. · Zbl 0599.65018 · doi:10.1137/0907058
[13] W. Schönauer,Scientific Computing on Vector Computers (North-Holland, Amsterdam/New York/Oxford/Tokyo, 1987).
[14] G.L.G. Sleijpen and D.R. Fokkema, BiCGstab(l) for linear equations involving matrices with complex spectrum, ETNA 1 (1993) 11–32. · Zbl 0820.65016
[15] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 (1989) 36–52. · Zbl 0666.65029 · doi:10.1137/0910004
[16] K. Turner and H.F. Walker, Efficient High Accuracy Solutions with GMRES(m), SIAM J. Sci. Statist. Comput. 13 (1992) 815–825. · Zbl 0758.65029 · doi:10.1137/0913048
[17] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644. · Zbl 0761.65023 · doi:10.1137/0913035
[18] R. Weiss, Convergence behavior of generalized conjugate gradient methods, PhD thesis, University of Karlsruhe (1990).
[19] J.H. Wilkinson,The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965). · Zbl 0258.65037
[20] D.M. Young and K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Lin. Alg. Appl. 34 (1980) 159–194. · Zbl 0463.65025 · doi:10.1016/0024-3795(80)90165-2
[21] L. Zhou and H.F. Walker, Residual smoothing techniques for iterative methods, SIAM J. Sci. Comput. 15 (1994) 297–312. · Zbl 0802.65041 · doi:10.1137/0915021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.