×

zbMATH — the first resource for mathematics

The constraint algorithm for time-dependent Lagrangians. (English) Zbl 0810.70014
Summary: The aim is to develop a constraint algorithm for time-dependent Lagrangian systems which permits to solve the motion equations. This algorithm extends the M. J. Gotay and J. M. Nester algorithm [Ann. Inst. Henri Poincaré, Nouv. Ser. Sect. A 32, 1-13 (1980; Zbl 0453.58016)] for autonomous Lagrangians which is, in fact, a particular case. To do this, the almost stable tangent geometry of the evolution space and the notion of cosymplectic structure are used.

MSC:
70H03 Lagrange’s equations
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.5802/aif.49 · Zbl 0056.17101 · doi:10.5802/aif.49
[2] DOI: 10.5802/aif.120 · Zbl 0281.49026 · doi:10.5802/aif.120
[3] DOI: 10.5802/aif.407 · Zbl 0219.53032 · doi:10.5802/aif.407
[4] DOI: 10.1088/0305-4470/14/10/012 · Zbl 0475.70022 · doi:10.1088/0305-4470/14/10/012
[5] DOI: 10.1088/0305-4470/16/16/014 · Zbl 0536.58004 · doi:10.1088/0305-4470/16/16/014
[6] Gotay M. J., Ann. Inst. H. Poincaré A 30 pp 129– (1979)
[7] Gotay M. J., Ann. Inst. H. Poincaré A 32 pp 1– (1980)
[8] DOI: 10.1016/0393-0440(86)90014-8 · Zbl 0621.58020 · doi:10.1016/0393-0440(86)90014-8
[9] de Filippo S., Ann. Inst. Henri Poincaré 50 pp 205– (1989)
[10] DOI: 10.1007/BF02814004 · doi:10.1007/BF02814004
[11] DOI: 10.1007/BF02820299 · doi:10.1007/BF02820299
[12] DOI: 10.1007/BF00672895 · Zbl 0733.58014 · doi:10.1007/BF00672895
[13] DOI: 10.1016/0393-0440(89)90029-6 · Zbl 0712.53017 · doi:10.1016/0393-0440(89)90029-6
[14] DOI: 10.1088/0305-4470/25/1/022 · Zbl 0754.53024 · doi:10.1088/0305-4470/25/1/022
[15] DOI: 10.1088/0305-4470/17/7/011 · Zbl 0545.58020 · doi:10.1088/0305-4470/17/7/011
[16] DOI: 10.1088/0305-4470/25/11/036 · Zbl 0768.70013 · doi:10.1088/0305-4470/25/11/036
[17] DOI: 10.1063/1.530264 · Zbl 0773.70013 · doi:10.1063/1.530264
[18] DOI: 10.1090/conm/132/1188444 · doi:10.1090/conm/132/1188444
[19] DOI: 10.5802/afst.655 · Zbl 0679.53027 · doi:10.5802/afst.655
[20] de León M., Port. Math. 47 pp 115– (1990)
[21] DOI: 10.1088/0305-4470/23/15/020 · Zbl 0707.70014 · doi:10.1088/0305-4470/23/15/020
[22] DOI: 10.1007/BF01811294 · Zbl 0745.58020 · doi:10.1007/BF01811294
[23] DOI: 10.1142/S0129055X91000114 · Zbl 0749.58020 · doi:10.1142/S0129055X91000114
[24] DOI: 10.1063/1.529693 · Zbl 0758.70010 · doi:10.1063/1.529693
[25] DOI: 10.5802/aif.451 · Zbl 0243.49011 · doi:10.5802/aif.451
[26] Krupka D., Arch. Math. (Brno) 22 pp 211– (1986)
[27] Vondra A., Proc. Conf. Diff. Geom. Appl., (Brno) 1989 pp 276– (1990)
[28] Vondra A., Czech. Math. J. 41 pp 724– (1991)
[29] Grácia X., Diff. Geom. Applications 2 pp 213– (1992) · Zbl 0763.34001 · doi:10.1016/0926-2245(92)90012-C
[30] DOI: 10.1063/1.529796 · Zbl 0756.58021 · doi:10.1063/1.529796
[31] Lichnerowicz A., C. R. Acad. Sc. Paris A 280 pp 37– (1975)
[32] DOI: 10.1063/1.526247 · Zbl 0585.70014 · doi:10.1063/1.526247
[33] DOI: 10.1007/BF00181576 · Zbl 0525.53047 · doi:10.1007/BF00181576
[34] Sniatycki J., Ann. Inst. H. Poincaré A 20 pp 365– (1974)
[35] Lichnerowicz A., C. R. Acad. Sc. Paris A 280 pp 523– (1975)
[36] Menzio M. R., Ann. Inst. H. Poincaré A 28 pp 349– (1978)
[37] DOI: 10.1063/1.527954 · Zbl 0644.70012 · doi:10.1063/1.527954
[38] Vaisman I., Ann. Inst. Henri Poincaré pp 317– (1978)
[39] DOI: 10.1007/BF00282337 · Zbl 0606.58024 · doi:10.1007/BF00282337
[40] DOI: 10.1063/1.1666045 · Zbl 0232.70018 · doi:10.1063/1.1666045
[41] DOI: 10.1088/0305-4470/25/14/017 · Zbl 0755.58026 · doi:10.1088/0305-4470/25/14/017
[42] DOI: 10.1007/BF01017038 · Zbl 0582.70021 · doi:10.1007/BF01017038
[43] DOI: 10.1016/0393-0440(87)90017-9 · Zbl 0657.58012 · doi:10.1016/0393-0440(87)90017-9
[44] DOI: 10.1103/PhysRevLett.42.413 · doi:10.1103/PhysRevLett.42.413
[45] DOI: 10.1209/0295-5075/2/3/004 · doi:10.1209/0295-5075/2/3/004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.