×

zbMATH — the first resource for mathematics

Limits of soliton solutions. (English) Zbl 0811.35122
The authors consider the \(N\)-soliton solution to the Korteweg-de Vries equation in the limit \(N \to \infty\) by careful investigation of the spectral and scattering properties of the Schrödinger operator associated to the KdV equation by the inverse scattering transform. The methods of the paper are applicable to general integrable systems such as the AKNS-class, the Toda lattice, and the Kadomtsev-Petviashvili equation.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Brüning and F. Gesztesy, Continuity of wave and scattering operators with respect to interactions , J. Math. Phys. 24 (1983), no. 6, 1516-1528. · Zbl 0523.47008
[2] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators , Probability and its Applications, Birkhäuser Boston Inc., Boston, MA, 1990. · Zbl 0717.60074
[3] W. E. Couch and R. J. Torrence, A particular \(N\)-soliton solution and scalar wave equations , J. Math. Phys. 20 (1979), no. 12, 2423-2426. · Zbl 0455.35106
[4] W. Craig, The trace formula for Schrödinger operators on the line , Comm. Math. Phys. 126 (1989), no. 2, 379-407. · Zbl 0681.34026
[5] P. A. Deift, Applications of a commutation formula , Duke Math. J. 45 (1978), no. 2, 267-310. · Zbl 0392.47013
[6] P. Deift and E. Trubowitz, Inverse scattering on the line , Comm. Pure Appl. Math. 32 (1979), no. 2, 121-251. · Zbl 0388.34005
[7] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and nonlinear wave equations , Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982. · Zbl 0496.35001
[8] P. L. Duren, Theory of \(H\spp\) spaces , Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970. · Zbl 0215.20203
[9] F. J. Dyson, Old and new approaches to the inverse scattering problem , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann eds. E. H. Lieb, B. Simon, and A. S. Wightman, Princeton Ser. Phys. Princeton Univ. Press, Princeton, 1976, pp. 151-167. · Zbl 0343.47006
[10] N. Ercolani and H. P. McKean, Geometry of KdV. IV. Abel sums, Jacobi variety, and theta function in the scattering case , Invent. Math. 99 (1990), no. 3, 483-544. · Zbl 0705.58026
[11] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution , Comm. Pure Appl. Math. 27 (1974), 97-133. · Zbl 0291.35012
[12] I. M. Gel’fand and L. A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations , Russ. Math. Surveys 30 (1975), no. 5, 77-113. · Zbl 0334.58007
[13] F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation , Trans. Amer. Math. Soc. 324 (1991), no. 2, 465-525. · Zbl 0728.35106
[14] F. Gesztesy and H. Holden, , in preparation.
[15] D. J. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints , Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 213-229. · Zbl 0678.34024
[16] D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , J. Math. Anal. Appl. 128 (1987), no. 1, 30-56. · Zbl 0666.34023
[17] H. Grosse, Quasiclassical estimates on moments of the energy levels , Acta Phys. Austriaca 52 (1980), no. 2, 89-105.
[18] E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable , Springer-Verlag, New York, 1965. · Zbl 0307.28001
[19] A. R. Its and V. B. Matveev, Schrödinger operators with the finite-gap spectrum and \(N\)-soliton solutions of the Korteweg-de Vries equation , Theoret. and Math. Phys. 23 (1975), 343-355.
[20] K. Iwasaki, Inverse problem for Sturm-Liouville and Hill equations , Ann. Mat. Pura Appl. (4) 149 (1987), 185-206. · Zbl 0641.34012
[21] I. S. Kac, On the multiplicity of the spectrum of a second-order differential operator , Sov. Math. Dokl. 3 (1962), 1035-1039. · Zbl 0131.31201
[22] T. Kato, Perturbation theory for linear operators , Classics in Mathematics, Springer-Verlag, Berlin, 1995. · Zbl 0836.47009
[23] I. Kay and H. E. Moses, Reflectionless transmission through dielectrics and scattering potentials , J. Appl. Phys. 27 (1956), 1503-1508. · Zbl 0073.22202
[24] M. Klaus, On the bound state of Schrödinger operators in one dimension , Ann. Physics 108 (1977), no. 2, 288-300. · Zbl 0427.47033
[25] M. Klaus, On \(-d^2/dx^2+V\) where \(V\) has infinitely many “bumps” , Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), no. 1, 7-13. · Zbl 0527.47032
[26] S. Kotani and M. Krishna, Almost periodicity of some random potentials , J. Funct. Anal. 78 (1988), no. 2, 390-405. · Zbl 0644.60061
[27] B. M. Levitan, On the closure of the set of finite-zone potentials , Math. USSR-Sb. 51 (1985), 67-89. · Zbl 0589.34026
[28] E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann eds. E. H. Lieb, B. Simon, and A. S. Wightman, Princeton Ser. Phys., Princeton Univ. Press, Princeton, 1976, pp. 269-303. · Zbl 0342.35044
[29] E. R. Lubenets, Estimates on the scattering data in a Schrödinger spectral problem on the line , Theoret. and Math. Phys. 79 (1989), 396-406.
[30] D. Sh. Lundina, Compactness of sets of reflectionless potentials , Teor. Funktsi\? Funktsional. Anal. i Prilozhen 44 (1985), 57-66, in Russian. · Zbl 0583.47046
[31] F. Mantlik and A. Schneider, Note on the absolutely continuous spectrum of Sturm-Liouville operators , Math. Z. 205 (1990), no. 3, 491-498. · Zbl 0713.34030
[32] V. A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data , What is integrability? ed. V. E. Zakharov, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, pp. 273-318. · Zbl 0810.34090
[33] H. P. McKean, Theta functions, solitons, and singular curves , Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) ed. C. I. Byrnes, Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 237-254. · Zbl 0411.58023
[34] R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation , J. Mathematical Phys. 9 (1968), 1202-1204. · Zbl 0283.35018
[35] S. N. Naboko, Dense point spectra of Schrödinger and Dirac operators , Theoret. and Math. Phys. 68 (1986), 646-653. · Zbl 0607.34023
[36] M. M. Nieto, Exact wave-function normalization constants for the \(B_0\tanh z-U_0\cosh^-2z\) and Pöschl-Teller potentials , Phys. Rev. A. 17 (1978), no. 3, 1273-1283.
[37] G. Polya and G. Szegö, Problems and Theorems in Analysis, Volume II , Grundlehren Math. Wiss., vol. 216, Springer-Verlag, Berlin, 1976. · Zbl 0311.00002
[38] M. Reed and B. Simon, Methods of modern mathematical physics. I , Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. · Zbl 0459.46001
[39] M. Reed and B. Simon, Methods of modern mathematical physics. III , Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979, Scattering Theory. · Zbl 0405.47007
[40] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators , Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. · Zbl 0401.47001
[41] U.-W. Schmincke, On Schrödinger’s factorization method for Sturm-Liouville operators , Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 67-84. · Zbl 0395.47022
[42] G. Segal and G. Wilson, Loop groups and equations of KdV type , Inst. Hautes Études Sci. Publ. Math. (1985), no. 61, 5-65. · Zbl 0592.35112
[43] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions , Ann. Physics 97 (1976), no. 2, 279-288. · Zbl 0325.35029
[44] B. Simon, Trace ideals and their applications , London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979. · Zbl 0423.47001
[45] S. Venakides, The generation of modulated wavetrains in the solution of the Korteweg-de Vries equation , Comm. Pure Appl. Math. 38 (1985), no. 6, 883-909. · Zbl 0657.35110
[46] V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system , Funct. Anal. Appl. 5 (1971), 280-287. · Zbl 0257.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.