×

zbMATH — the first resource for mathematics

Local properties of Coulombic wave functions. (English) Zbl 0812.35105
A detailed description of the local behaviour of solutions of the Schrödinger equation for Coulombic systems (atoms, molecules etc.) in the neighbourhood of the singularities of the potential is given. The influence of Fermi statistics on the local behaviour of many particle fermionic wave functions is investigated.

MSC:
35Q40 PDEs in connection with quantum mechanics
81V10 Electromagnetic interaction; quantum electrodynamics
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abott, P.C., Maslen, E.N.: Coordinate systems and analytic expansions for three-body atomic wave functions. I. Partial summation for the Fock expansion in hyperspherical coordinates. J. Phys. A20, 2043–2075 (1987) · doi:10.1088/0305-4470/20/8/023
[2] Aizenman, M., Simon, B.: Brownian motion and Harnack’s inequality for Schrödinger operators. Commun. Pure Appl. Math.35, 209–237 (1982) · Zbl 0475.60063 · doi:10.1002/cpa.3160350206
[3] Avery, J.: Hyperspherical harmonics: applications in quantum theory. Dordrecht: Kluwer Academic Publishers 1989 · Zbl 0702.35215
[4] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations, 2nd ed. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0562.35001
[5] Hinz, A.M., Kalf, H.: Subsolution estimates and Harnack’s inequality for Schrödinger operators. J. Reine Angew. Math.404, 118–134 (1990) · Zbl 0779.35026
[6] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Local properties of solutions of Schrödinger equations. Commun. Partial Diff. Eq.17, 491–522 (1992) · Zbl 0783.35054 · doi:10.1080/03605309208820851
[7] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Stremnitzer, H.: Electronic wave functions near coalescence points. Phys. Rev. Lett.68, 3857–3860 (1992). · Zbl 0812.35105 · doi:10.1103/PhysRevLett.68.3857
[8] Hoffmann-Ostenhof, M., Seiler, R.: Cusp conditions for eigenfunctions ofN-electron systems. Phys. Rev. A23, 21–23 (1981) · doi:10.1103/PhysRevA.23.21
[9] Hörmander, L.: Uniqueness theorem for second order elliptic differential equations. Commun. Partial Diff. Eq.8, 21–64 (1983) · Zbl 0546.35023 · doi:10.1080/03605308308820262
[10] Judd, B.R.: Operator techniques in atomic spectroscopy. New York: McGraw-Hill 1963
[11] Kato, T.: On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure and Appl. Math.10, 151–171 (1957) · Zbl 0077.20904 · doi:10.1002/cpa.3160100201
[12] Kato, T.: Schrödinger operators with singular potentials. Israel J. Math.13, 135–148 (1973) · Zbl 0246.35025 · doi:10.1007/BF02760233
[13] Kutzelnigg, W., Klopper, W.: Wave functions with terms linear in the interelectronic coordinates to take care on the correlation cusp. I. General theory. J. Chem. Phys.94, 1985–2001 (1991) · doi:10.1063/1.459921
[14] Leray, J. In: Ciarlet, P.G., Roseau, M. (eds.). Trends and applications of pure mathematics to mechanics. Lecture Notes in Physics, 195, pp. 235–247. Berlin, Heidelberg, New York: Springer 1985
[15] Morgan, J.D. III: Convergence properties of Fock’s expansion forS-state eigenfunctions of the He-Atom. Theor. Chim. Acta69, 181–223 (1986) · doi:10.1007/BF00526420
[16] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, selfadjointness. New York: Academic Press 1975 · Zbl 0308.47002
[17] Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc.7, 447–526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[18] Stein, E.M., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton, NJ: Princeton University Press 1971 · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.