×

zbMATH — the first resource for mathematics

Weighted Sobolev inequalities on domains satisfying the chain condition. (English) Zbl 0812.46020
Summary: By similar methods of T. Iwaniec and C. A. Nolder [Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 267-282 (1985; Zbl 0588.30023)], we obtain weighted Sobolev inequalities on domains satisfying the Boman chain condition.

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52 – 68. · doi:10.1007/BFb0081242 · doi.org
[2] Sagun Chanillo and Richard L. Wheeden, Poincaré inequalities for a class of non-\( {A_p}\) weights, Indiana Math. J. (to appear). · Zbl 0795.42012
[3] Seng-Kee Chua, Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J. 41 (1992), no. 4, 1027 – 1076. · Zbl 0767.46025 · doi:10.1512/iumj.1992.41.41053 · doi.org
[4] -, Extension theorems on weighted Sobolev spaces. II (to appear). · Zbl 0767.46025
[5] -, Extension and restriction theorems on weighted Sobolev spaces, Ph.D. thesis, Rutgers University, 1991.
[6] Filippo Chiarenza and Michele Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. 93 (1985), no. 4, 703 – 704. · Zbl 0526.35015
[7] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. (3) 54 (1987), no. 1, 141 – 175. · Zbl 0591.46027 · doi:10.1112/plms/s3-54.1.141 · doi.org
[8] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77 – 116. · Zbl 0498.35042 · doi:10.1080/03605308208820218 · doi.org
[9] Ritva Hurri, Poincaré domains in \?\(^{n}\), Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71 (1988), 42. · Zbl 0667.46023
[10] Ritva Hurri, The weighted Poincaré inequalities, Math. Scand. 67 (1990), no. 1, 145 – 160. · Zbl 0722.30001 · doi:10.7146/math.scand.a-12325 · doi.org
[11] T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in \?\(^{n}\), Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267 – 282. · Zbl 0588.30023 · doi:10.5186/aasfm.1985.1030 · doi.org
[12] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207 – 226. · Zbl 0236.26016
[13] Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71 – 88. · Zbl 0489.30017 · doi:10.1007/BF02392869 · doi.org
[14] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383 – 401. · Zbl 0406.30013 · doi:10.5186/aasfm.1978-79.0413 · doi.org
[15] Eric Sawyer and Richard L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. (to appear). · Zbl 0783.42011
[16] Wayne Smith and David A. Stegenga, Hölder domains and Poincaré domains, Trans. Amer. Math. Soc. 319 (1990), no. 1, 67 – 100. · Zbl 0707.46028
[17] Susan G. Staples, \?^\?-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 103 – 127. · Zbl 0706.26010 · doi:10.5186/aasfm.1989.1429 · doi.org
[18] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[19] Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. · Zbl 0676.42021
[20] Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. · Zbl 0621.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.