Ageev, S. M. Classification of \(G\)-spaces. (English. Russian original) Zbl 0812.57024 Russ. Acad. Sci., Izv., Math. 41, No. 3, 581-591 (1993); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 56, No. 6, 1345-1357 (1992). A complete solution is given of a problem due to R. S. Palais [The classification of \(G\)-spaces, Mem. Am. Math. Soc. 36 (1960; Zbl 0119.384)]. Namely, it is proved that for every compact group \(G\), the equivariant Hilbert cube is an \(n\)-universal \(G\)-space, for every \(n\). Reviewer: D.Repovš (Ljubljana) MSC: 57S10 Compact groups of homeomorphisms 57S15 Compact Lie groups of differentiable transformations 55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology 54C55 Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties) 54F45 Dimension theory in general topology 57N20 Topology of infinite-dimensional manifolds Keywords:compact Lie group; \(G\)-bundle; equivariant Hilbert cube; \(n\)-universal \(G\)-space Citations:Zbl 0119.384 PDF BibTeX XML Cite \textit{S. M. Ageev}, Russ. Acad. Sci., Izv., Math. 41, No. 3, 1 (1992; Zbl 0812.57024); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 56, No. 6, 1345--1357 (1992) Full Text: DOI OpenURL