A special Newton-type optimization method. (English) Zbl 0814.65063

Summary: The Kuhn-Tucker conditions of an optimization problem with inequality constraints are transformed equivalently into a special nonlinear system of equations \(T_ 0(z)= 0\). It is shown that Newton’s method for solving this system combines two valuable properties: The local \(Q\)-quadratic convergence without assuming the strict complementary slackness condition and the regularity of the Jacobian of \(T_ 0\) at a point \(z\) under reasonable conditions, so that Newton’s method can be used also far from a Kuhn-Tucker point.


65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI


[1] Abadie J., Lecture notes in Mathematics 1190 pp 1– (1986)
[2] Burmeister W., W.Private communication (1985)
[3] Clarke F.H., Optimization and Nonsmooth Analysis (1983) · Zbl 0582.49001
[4] DOI: 10.1007/BF01585100 · Zbl 0501.90078
[5] Evtušenko Ju., Metody rešenija ékstremal’nyh zadač i ih primenenie v sistemah optimizacii (1983)
[6] Evtušenko Ju.G., Soviet.Math.Dokl 30 pp 313– (1984)
[7] Fischer, A. 07-11 1985. ”Defektfunktionale bei Ungleichungen und gedämpfte gestörte Newton-Verfahren Preprint”. Edited by: Beckmann, M. and Künzi, H.P. Vol. 187, 07-11, TU Dresden: Department of Mathematics.
[8] Fischer, A. 1989. On weakening regularity conditions for Newton-type methods for nonlinear constrained optimization. Proceedings Conference Math. Opt., Eisenach. 1989. pp.61–64.
[9] Hock W., Lecture Notes in Economics and Mathematical Systems 187 (1981)
[10] Ižutkin V.S., Ž. Vyčisl. Mat. i Mat. Fis 28 pp 1799– (1988)
[11] DOI: 10.1080/02331938808843355 · Zbl 0654.90075
[12] Kleinmchel H., Wiss. Z. TU Dresden 38 pp 219– (1989)
[13] Kleinmichel, H. and Schönefeld, K. 07-11 1989. ”Superlinearly convergent optimization methods without solving QP. Preprint”. Edited by: Beckmann, M. and Künzi, H.P. 07-11, TU Dresden: Department of Mathematics.
[14] Kojima M., Mathematical Programming Study 21 pp 150– (1984) · Zbl 0569.90074
[15] Kojima M., Journal of Operations Research Society of Japan 29 pp 352– (1986)
[16] Kummer, B. 1988.Newton’s method for non-differentiable functions. In: Mathematical Research.Advances in Mathematical Optimization, 114–125. Berlin: AKademie verlag. · Zbl 0662.65050
[17] Kummer, B. 1991. Newton’ s method based on generalized derivaties for nonsmooth functions. Convergence analysis. Working Paper, 1991. pp.61–64. Berlin: Department of Mathematics, Humboldt-University.
[18] DOI: 10.1287/moor.15.2.311 · Zbl 0716.90090
[19] Pšeničnyj B.N., Ž. Vyčisl. Mat. i Mat. Fis 20 pp 605– (1980)
[20] Purtov V.A., Mathematical Research 60 pp 87– (1991)
[21] Ralph and Global, D. convergence of damped Newton’s method for nonsmooth equations, via the path search. Technical Report TR 90-1181. 1990. December, Ithaca, New York: Department of Computer Science, Cornell University.
[22] DOI: 10.1007/BF01585500 · Zbl 0294.90078
[23] Robinson S.M., Mathematical Programming Study 30 pp 45– (1887) · Zbl 0629.90079
[24] Robinson, S. M. Newton’s method for a class of nonsmooth functions. Manuscript. 1990. University of Wisconsin-Madison: Department of Industrial Engineering.
[25] DOI: 10.1007/BF01395810 · Zbl 0534.65030
[26] Schonefeld K., Uber lokale Optimierungsverfahren und deren Kopplung mit global konvergenten Verfahren (1989)
[27] DOI: 10.1007/BF00933828 · Zbl 0452.90067
[28] DOI: 10.1007/BF02592051 · Zbl 0516.90065
[29] DOI: 10.1007/BF02592051 · Zbl 0516.90065
[30] DOI: 10.1007/BF00935279 · Zbl 0465.90088
[31] Wilson R.B., A simplical algorithm for concave programming. Ph.D. Dissertation (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.