×

zbMATH — the first resource for mathematics

Topographical multilevel single linkage. (English) Zbl 0814.90102
Summary: An iterative topographical multilevel single linkage (TMSL) method has been introduced. The approach uses topographical information on the objective function, in particular the \(g\)-nearest-neighbour graph. The algorithm uses evenly distributed points from a Halton sequence of uniform limiting density. We discuss the implementation of the algorithm and compare its performance with other well-known algorithms. The new algorithm performs much better (in some cases several times) than the multilevel single linkage method in terms of number of function evaluations but is not quite so competitive with respect to CPU time.

MSC:
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ali, M. M. (1994),Some Modified Stochastic Global Optimization Algorithms with Applications, Ph.D. Thesis, Loughborough University of Technology, Loughborough, Leicestershire, England.
[2] Ali, M. M. and Storey, C. (1995), Modified Controlled Random Search Algorithms, to appear inInternational Journal of Computer Mathematics, 54, No. 3/4.
[3] Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1985), Global Optimization and Stochastic Differential Equations,Journal of Optimization Theory and Applications 47, 1-16. · Zbl 0549.65038
[4] Boender, C. G. E. and Rinnooy Kan, A. H. G. (1987), Bayesian Stopping Rules for Multistart Global Optimization Methods,Mathematical Programming 37, 59-80. · Zbl 0626.90079
[5] Bohachevsky, M. E., Johson, M. E. and Stein, M. L. (1986), Generalized Simulated Annealing for Function Optimization,Technometrics 28, 209-217. · Zbl 0609.65045
[6] Dekkers, A. and Aarts, E. (1991), Global Optimization and Simulated Annealing,Mathematical Programming 50, 367-393. · Zbl 0753.90060
[7] De Biase, L. and Frontini, F. (1978), A Stochastic Method for Global Optimization: Its Structure and Numerical Performance, inTowards Global Optimization 2, Dixon, L. C. W. and Szegö, G. P. (eds.), North-Holland, Amsterdam, Holland, 85-102. · Zbl 0396.90082
[8] Dixon, L. C. W. and Szegö, G. P. (1978),Towards Global Optimization 2, North-Holland, Amsterdam, Holland. · Zbl 0385.00011
[9] Floudas, A. and Pardalos, M. (eds.) (1992),Recent Advances in Global Optimization; Princeton University Press, U.S.A.
[10] Horst, R. and Tuy, H. (1990),Global Optimization (Deterministic Approaches), Springer-Verlag, Berlin. · Zbl 0704.90057
[11] Price, W. L. (1978), A Controlled Random Search Procedure for Global Optimization, inTowards Global Optimization 2, Dixon, L. C. W. and Szegö, G. P. (eds.), North-Holland, Amsterdam, Holland, 71-84.
[12] Ratschek, H. and Rokne, J. (1988),New Computer Methods for Global Optimization, Ellis Horwood, Chichester. · Zbl 0648.65049
[13] Rinnooy Kan, A. H. G. and Timmer, G. T. (1984), Stochastic Methods for Global Optimization,American Journal of Mathematical and Management Sciences 4, 7-40. · Zbl 0556.90073
[14] Rinnooy Kan, A. H. G. and Timmer, G. T. (1987), Stochastic Global Optimization Methods; Part I: Clustering Methods,Mathematical Programming 39, 27-56. · Zbl 0634.90066
[15] Rinnooy Kan, A. H. G. and Timmer, G. T. (1987a), Stochastic Global Optimization Methods; Part II: Multilevel Methods,Mathematical Programming 39, 57-78. · Zbl 0634.90067
[16] Shaw, J. E. H. (1988), A Quasirandom Approach to Integration in Bayesian Statistics,The Annals of Statistics 16 (2), 895-914. · Zbl 0645.62043
[17] Timmer, G. T. (1984), Ph.D. Dissertation, Econometric Institute, Erasmus University, Rotterdam, Holland.
[18] Törn, A. and Zilinskas, A. (1989),Global Optimization, Springer-Verlag, Berlin. · Zbl 0752.90075
[19] Törn, A. and Viitanen, S. (1992), Topographical Global Optimization, inRecent Advances in Global Optimization, C. A. Floudas and P. M. Pardalos (eds.), Princeton University Press, Princeton U.S.A., 384-398.
[20] Törn, A. (1978), A Search Clustering Approach to Global Optimization, inTowards Global Optimization 2, Dixon, L. C. W. and Szegö, G. P. (eds.), North-Holland, Amsterdam, Holland, 49-62.
[21] Vanderbilt, D. and Louie, S. G. (1984), A Monte Carlo Simulated Annealing Approach to Optimization over Continuous Variables,Journal of Computational Physics 56, 259-271. · Zbl 0551.65045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.