zbMATH — the first resource for mathematics

Binate towers of groups. (English) Zbl 0815.20015
For any group \(H\) it is shown that the category \(B\text{Tow}_ H\) of binate towers with base \(H\) admits an initial object \(U(H) = \{u(H)_ i,\theta_ i,t_ i\}\). Since \(U(H)\) is obtained from \(H\) by repeated HNN extensions it is referred to as the HNN binate tower with base \(H\). Given a tower \(\{G_ i\}\) with base \(G_ 0 = H\) and surjective homomorphisms \(\{\pi_ i\} : \{U(H)_ i\} \to \{G_ i\}\) of towers, necessary and sufficient conditions are determined for getting a binate tower \(\{G_ i,\alpha_ i,u_ i\}\) rendering \(\{\pi_ i\} : \{U(H)_ i,\theta_ i,t_ i\} \to \{G_ i,\alpha_ i,u_ i\}\) a morphism in \(B \text{Tow}_ H\). For any \(\{H_ i,P_ i,v_ i\}\) in \(B\text{Tow}_ H\) the limit group \({\underset \longrightarrow \lim} H_ i\) is acyclic.
The binate tower \(U(1)\) has a number of remarkable properties. The limit group \(U {\underset \longrightarrow \lim} U(1)\) is very badly non- Hopfian and very badly non co-Hopfian. While the group \({\underset \longrightarrow \lim} U(1)\) is acyclic, the groups \(U(1)_ i\) have a total integral homology free abelian of \(\text{rank} > 2^{2i - 2} + 1\) for \(i \geq 3\). Also, some connections between the problem of Kervaire on normal generators of free products with the infinite cyclic group and study of binate towers are indicated. In particular, it is noted that affirming the Kervaire conjecture for all binate groups would suffice to affirm it for all groups. For certain binate groups this is proved.

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F38 Other groups related to topology or analysis
20J05 Homological methods in group theory
20J15 Category of groups
20E36 Automorphisms of infinite groups
20F05 Generators, relations, and presentations of groups
Full Text: DOI
[1] R. C.Alperin and A. J.Berrick, Linear representations of binate groups. J. Pure Appl. Algebra, to appear. · Zbl 0813.20060
[2] G. Baumslag, E. Dyer andA. Heller, The topology of discrete groups. J. Pure Appl. Algebra16, 1-47 (1980). · Zbl 0419.20026 · doi:10.1016/0022-4049(80)90040-7
[3] A. J. Berrick, Two functors from abelian groups to perfect groups. J. Pure Appl. Algebra44, 35-43 (1987). · Zbl 0614.20038 · doi:10.1016/0022-4049(87)90014-4
[4] A. J.Berrick, Universal groups, binate groups and acyclicity. In: Group Theory, Proceedings of the Singapore Conference, 253-266. Berlin, 1989. · Zbl 0663.20053
[5] A. J. Berrick, Remarks on the structure of acyclic groups. Bull. London Math. Soc.22, 227-232 (1990). · Zbl 0749.20001 · doi:10.1112/blms/22.3.227
[6] A. J.Berrick, Groups with no nontrivial linear representations. Bull. Austral. Math. Soc., to appear. · Zbl 0834.20037
[7] A. J. Berrick andC. F. Miller III, Strongly torsion generated groups. Math. Proc. Cambridge Philos. Soc.111, 219-229 (1992). · Zbl 0762.20017 · doi:10.1017/S0305004100075319
[8] K. S.Brown, Cohomology of Groups. Graduate Texts in Math.87, Berlin-Heidelberg-New York 1982.
[9] R. G. Burns, A. Karrass andD. Solitar, A note on groups with separable finitely generated subgroups. Bull. Austral. Math. Soc.36, 153-160 (1987). · Zbl 0613.20018 · doi:10.1017/S0004972700026393
[10] Z. Fiedorowicz, R. Schw√§nzl, R. Steiner andR. Vogt, Non-connective delooping ofK-theory of anA ? ring space. Math. Z.203, 43-57 (1990). · Zbl 0659.55007 · doi:10.1007/BF02570722
[11] E. Formanek andC. Procesi, The automorphism group of a free group is not linear. J. Algebra149, 494-499 (1992). · Zbl 0780.20023 · doi:10.1016/0021-8693(92)90029-L
[12] P. De La Harpe andD. McDuff, Acyclic groups of automorphisms. Comment. Math. Helv.58, 48-71 (1983). · Zbl 0522.20034 · doi:10.1007/BF02564624
[13] G. Higman, A finitely generated infinite simple group. J. London Math. Soc.26, 61-64 (1951). · Zbl 0042.02201 · doi:10.1112/jlms/s1-26.1.61
[14] N. Higson, AlgebraicK-theory of stableC *-algebras. Adv. in Math.67, 1-140 (1988). · Zbl 0635.46061 · doi:10.1016/0001-8708(88)90034-5
[15] J. Howie, Nonsingular systems of two length three equations over a group. Math. Proc. Cambridge Philos. Soc.110, 11-24 (1991). · Zbl 0731.20021 · doi:10.1017/S0305004100070079
[16] D. M. Kan andW. P. Thurston, Every connected space has the homology of aK(?,1). Topology15, 253-258 (1976). · Zbl 0355.55004 · doi:10.1016/0040-9383(76)90040-9
[17] R. C.Lyndon and P. E.Schupp, Combinatorial Group Theory. Ergebnisse der Math.89, Berlin-Heidelberg-New York 1977. · Zbl 0368.20023
[18] J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms. Topology10, 297-298 (1971). · Zbl 0221.57021 · doi:10.1016/0040-9383(71)90022-X
[19] B. H. Neumann, A note on algebraically closed groups. J. London Math. Soc.27, 227-242 (1952). · Zbl 0046.24802 · doi:10.1112/jlms/s1-27.2.247
[20] P. Sankaran andK. Varadarajan, Some remarks on pseudo-mitotic groups. Indian J. Math.29, 283-293 (1987). · Zbl 0669.20045
[21] P. Sankaran andK. Varadarajan, Acyclicity of certain homeomorphism groups. Canad. J. Math.42, 80-94 (1990). · Zbl 0711.57022 · doi:10.4153/CJM-1990-005-0
[22] P. E. Schupp, Embeddings into simple groups. J. London Math. Soc.13, 90-94 (1976). · Zbl 0363.20026 · doi:10.1112/jlms/s2-13.1.90
[23] J. R. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated. Amer. J. Math.85, 541-543 (1963). · Zbl 0122.27301 · doi:10.2307/2373106
[24] K. Varadarajan, Pseudo-mitotic groups. J. Pure Appl. Algebra37, 205-213 (1985). · Zbl 0569.20039 · doi:10.1016/0022-4049(85)90098-2
[25] J. B. Wagoner, Delooping classifying spaces in algebraicK-theory, Topology11, 349-370 (1972). · Zbl 0276.18012 · doi:10.1016/0040-9383(72)90031-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.