×

On duality concepts in fractional programming. I. (English) Zbl 0817.90122

Summary: We describe an approach to duality in fractional programming on the basis of another kind of conjugate functions. The connections to some duality concepts (the Lagrange-duality and duality concepts of Craven and Schaible) are investigated and some new proofs of strong duality theorems are given.

MSC:

90C32 Fractional programming
65K05 Numerical mathematical programming methods
49N15 Duality theory (optimization)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF00941068 · Zbl 0568.90092
[2] DOI: 10.1007/BF01951417 · Zbl 0267.90086
[3] DOI: 10.1007/BF00940006 · Zbl 0632.90077
[4] Cambini A., Methods of Operations Research 53 pp 21– (1985)
[5] Lecture Notes in Economics and Mathematical Systems 345 (1990)
[6] Craven B.D., Sigma Series in Applied Mathematics
[7] Craven B.D., Generalized Concavity in Optimization and Economics pp 473– (1980)
[8] Deumlich R., Ein geometrischer Zugang zur Optimierungstheorie auf der Grundlage der {\(\Phi\)}-konjugierten Funktionen (1980)
[9] DOI: 10.1080/02331938308842841 · Zbl 0524.90081
[10] Deumlich R., Math Operationsforsch. u. Statist.Ser. Optimization 16 pp 499– (1984)
[11] DOI: 10.1080/02331938508843077 · Zbl 0605.90104
[12] Deumlich R., Math.Operationsforsch. u. Statist., Ser. Optimization 9 pp 335– (1978)
[13] Deumlich R., Math. Operationsforsch. u. Statist., Ser. Optimization 11 pp 181– (1980)
[14] Deumlich R., Operations Research in Progress pp 27– (1982)
[15] Deumlich, R., Ester, K.H. and Nehse, R. Survey of Mathematical Programming. Proceedings of the 9th International Mathematical Programming Symposium. 1976, Budapest. Edited by: Prekopa, A. Vol. 1, 9, pp.193–204. Budapest: Akadmiai Kiado. Generalizations of Conjugate Functions, S
[16] Deumlich, R. and Elster, K.H. 1984. Proceedings 9. Sympos. Operations Research. Fractional Programming in View of Generalized Conjugation. August1984, Osnabrück.
[17] Deumlich R., Journal of Optimization Theory and Applications 48 (1986) · Zbl 0559.90073
[18] Deumlich R., Wissenschaftliche Zeitschrift der Ilmenau 37 (1991)
[19] Elster K.H., Proceedings V. Symposium on Operations Research
[20] Elster, K.H. and Deumlich, R. Lagrange, duality for nonconvex optimization problems. Proceedings VI. Symposium on Operations Research. Augsburg. · Zbl 0397.90084
[21] Fenchel W., Convex Cones, Sets and Functions (1953) · Zbl 0053.12203
[22] Golstein E.G., Dualitätstheorie in der nichtlinearen Optimierung und ihre Anwendung (1975)
[23] DOI: 10.1080/02331938808843379 · Zbl 0671.49015
[24] DOI: 10.1287/mnsc.22.8.858 · Zbl 0338.90050
[25] DOI: 10.1007/BF00940538 · Zbl 0679.90080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.