zbMATH — the first resource for mathematics

On Jaśkowski’s discussive logics. (English) Zbl 0818.03012
‘Discussive logics’ are apparently extensions of classical propositional or predicate systems which are ‘inconsistent’ in the sense that \(\alpha\) or \(\neg \alpha\) may be included in a theory, yet are not ‘trivial’ in the sense that the theory coincides with the set of all logical formulae. This paper seeks to show that such logics provide a proper foundation for the axiomatization of physics. The authors claim ‘it is the purpose of this paper to lay those foundations; we leave their consequences to physics to a future paper’.
‘Laying the foundations’ consists in presenting the well-known modal calculus S5 along with Kripke semantics, axiomatization and some completeness results, then developing the extension S5Q\(^ =\) which is ‘S5 with quantification and necessary equality’. Next ‘discussive’ analogues of these systems are presented, called \(J\) and \(J^*\) with corresponding axiomatizations, ‘Kripke type’ semantics and model- theoretic results.
At the end of the paper a formal theory of ‘pragmatic truth’ is sketched founded on the notion of a ‘simple pragmatic structure’, or sps, \(\langle A_ 1, A_ 2, R_ i, R_ j, P\rangle\) where \(A_ 1\) is a set of ‘real objects (e.g. vapour trajectories,…spectral lines…)’, \(A_ 2\) is a set of ideal objects ‘(e.g. quarks or wave functions…)’, \(R_ i\) are relations over \(A_ 1\) and \(R_ j\) relations over \(A_ 1\cup A_ 2\) and \(P\) are ‘true decidable propositions’ and ‘general sentences that express laws or theories already accepted as true’. A kind of Kripke semantics founded on these structures is supposed to furnish an appropriate sense of ‘pragmatic truth’ for the axiomatization of physics.
After the rather laboured ‘laying out’ of the logic, this comes at breathtaking speed, lacking detail (e.g. of the conditions defining \(P\)) and with no results yet to suggest a fruitful application to quantum mechanics. The paper ends with discussion of Dalla Chiara’s similar formalism.

03B53 Paraconsistent logics
03B45 Modal logic (including the logic of norms)
03B80 Other applications of logic
03B30 Foundations of classical theories (including reverse mathematics)
Full Text: DOI
[1] Arruda, A. I., 1980, ?A survey of paraconsistent logic?, in A. I. Arruda, N. C. A. da Costa and R. Chuaqui (eds.),Mathematical Logic in Latin America, North-Holland, 1 ? 41. · Zbl 0426.03031
[2] Arruda, A. I., 1989, ?Aspects of the historical development of paraconsistent logic?, in G. Priest, R. Routley and J. Norman (eds.),Paraconsistent Logic, Philosophia Verlag, 99 ? 130. · Zbl 0694.03018
[3] Church, A., 1956,Introduction to Mathematical Logic, Princeton University Press.
[4] da Costa, N. C. A., 1975, ?Remarks on Ja?kowski’s discussive logic?,Rep. Math. Logic 4, 7-16. · Zbl 0313.02018
[5] da Costa, N. C. A., 1989a, ?Logic and pragmatic truth?, in J. E. Fenstad et al. (eds.),Logic, Methodology and Philosophy of Science VIII, Elsevier, 247 ? 261. · Zbl 0724.03006
[6] da Costa, N. C. A., 1989b, ?Logcis that are both paraconsistent and paracomplete?,Atti Acad. Lincei Rend. Fis. 83 (8), 29-32. · Zbl 0741.03012
[7] da Costa, N. C. A. andR. Chuaqui, 1988, ?On Suppes’ Set-Theoretic Predicates?,Erkenntnis 29, 95-112. · doi:10.1007/BF00166367
[8] da Costa, N. C. A. andR. Chuaqui, 1990, ?The logic of pragmatic truth?, to appear.
[9] da Costa, N. C. A. andF. A. Doria, 1990, ?Ja?kowski’s logic and the foundations of physics?, preprint.
[10] da Costa, N. C. A. andF. A. Doria, 1991, ?Undecidability and Incompleteness in Classical Mechanics?,International Journal of Theoretical Physics 30, 1041-1073. · Zbl 0850.70023 · doi:10.1007/BF00671484
[11] da Costa, N. C. A. andF. A. Doria, 1992a, ?Structures, Suppes Predicates and Boolean-Valued Models in Physics?, to appear in J. Hintikka (ed.),Festschrift in Honor of Prof. V. Smirnov on his 60th Birthday. · Zbl 0899.03040
[12] da Costa, N. C. A. andF. A. Doria, 1992b, ?Suppes Predicates for Classical Physics?, in J. Echeverr?a et al. (eds.),The Space of Mathematics Walter de Gruyter, Berlin-New York. · Zbl 0847.03007
[13] da Costa, N. C. A. andF. A. Doria, 1992c, ?On the incompleteness of axiomatized models for the empirical sciences?,Philosophica 50, 901-928.
[14] da Costa, N. C. A. andF. A. Doria, 19XX,Metamathematics of Physics, to appear.
[15] da Costa, N. C. A., F. A. Doria andJ. A. de Barros, 1990, ?A Suppes Predicate for General Relativity and Set-Theoretically Generic Spacetimes?,International Journal of Theoretical Physics 29, 935-961. · Zbl 0707.03045 · doi:10.1007/BF00673682
[16] da Costa, N. C. A. andL. Dubikajtis, 1968, ?Sur la logique discoursive de Ja?kowski?,Bull. Acad. Polonaise des Sciences 26, 551-557.
[17] da Costa, N. C. A. andL. Dubikajtis, 1977, ?On Ja?kowski’s discussive logic?, in A. I. Arruda, N. C. A. da Costa and R. Chuaqui (eds.),Non-Classical Logic, Model Theory and Computability, North-Holland, 37 ? 56. · Zbl 0359.02012
[18] da Costa, N. C. A. andD. Marconi, 1987, ?An overview of paraconsistent logic in the 80s?,Monografias da Soc. Paranaense de Matem?tica 5. · Zbl 0622.03006
[19] Dalla Chiara, M. L., andR. Giuntini, 1989, ?Paraconsistent Quantum Logics?,Foundations of Physics 19, 891-904. · doi:10.1007/BF01889304
[20] Dalla Chiara, M. L. andG. Toraldo di Francia, 1981,Le Teorie Fisiche, Boringhieri.
[21] T. Furmanowski, T., 1975, ?Remarks on discussive propositional calculus?,Studia Logica 34, 39-43. · Zbl 0309.02020 · doi:10.1007/BF02314422
[22] L. Henkin andR. Montague, 1956, ?On the definition of formal deduction?,Journal of Symbolic Logic 21, 129-136. · Zbl 0073.00701 · doi:10.2307/2268751
[23] Hughes, G. H. andM. J. Cresswell, 1968,An Introduction to Modal Logic, Methuen. · Zbl 0205.00503
[24] Ja?kowski, S., 1948, ?Rachunek zda? dla system?w dedukcyjnych sprzecznych?,Studia Soc. Sci. Torunensis 5, 55-77.
[25] Ja?kowski, S., 1949, ?O koniunkcji dyskusyjnej w rachunku zda? dla system?w dedukcyjnych sprzecznych?,Studia Soc. Sci. Torunensis 8, 171-172.
[26] Ja?kowski, S., 1969, ?Propositional calculus for contradictory deductive systems?,Studia Logica 24, 143-157. · Zbl 0244.02004 · doi:10.1007/BF02134311
[27] Kleene, S. C., 1967,Mathematical Logic, Wiley.
[28] Kotas, J., 1971, ?On the algebra of classes of formul? of Ja?kowski’s discussive system?,Studia Logica 27, 81-91. · Zbl 0286.02066 · doi:10.1007/BF02282553
[29] Kotas, J., 1974, ?The axiomatization of Ja?kowski’s discussive system?,Studia Logica 28, 195-200. · Zbl 0295.02015 · doi:10.1007/BF02120494
[30] Kotas, J., 1975, ?Discussive sentential calculus of Ja?kowski?,Studia Logica 24, 149-168. · Zbl 0315.02033 · doi:10.1007/BF02123384
[31] I. Mikenberg, N. C. A. da Costa andR. Chuaqui, 1986, ?Pragmatic truth and approximation to truth?,Journal of Symbolic Logic 51, 201-221. · Zbl 0606.03009 · doi:10.2307/2273956
[32] G. R. Priest, R. Routley andJ. Norman (eds.), 1989,Paraconsistent Logic, Philosophia Verlag.
[33] Quine, W. v. O., 1950,Methods of Logic, Holt. · Zbl 0038.14811
[34] Rescher, N. andR. Brandon, 1980,The Logic of Inconsistency, Blackwell. · Zbl 0598.03001
[35] Shoenfield, J., 1967,Mathematical Logic, Addison-Wesley. · Zbl 0155.01102
[36] Stewart, I., 1991, Deciding the undecidable,Nature 352, 664-665. · doi:10.1038/352664a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.