×

A framework for block ILU factorizations using block-size reduction. (English) Zbl 0819.65018

A block ILU factorization technique for block tridiagonal matrices is proposed. Approximate inverses of the tridiagonal blocks are used which are correct for some restrictions. So there is some resemblance to the frequency filtering method of G. Wittum [Notes Numer. Fluid Mech. 31, 228-240 (1991; Zbl 0744.65029)]. Theoretical results are provided for the case that the matrices are \(M\)-matrices or positive definite.
Reviewer: D.Braess (Bochum)

MSC:

65F05 Direct numerical methods for linear systems and matrix inversion
65F10 Iterative numerical methods for linear systems

Citations:

Zbl 0744.65029
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] O. Axelsson, A survey of vectorizable preconditioning methods for large scale finite element matrix problems, Colloquium topics in applied numerical analysis, Vol. 1 (Amsterdam, 1983/1984) CWI Syllabi, vol. 4, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1984, pp. 21 – 47.
[2] O. Axelsson, A general incomplete block-matrix factorization method, Linear Algebra Appl. 74 (1986), 179 – 190. · Zbl 0622.65023
[3] O. Axelsson, S. Brinkkemper, and V. P. Il\(^{\prime}\)in, On some versions of incomplete block-matrix factorization iterative methods, Linear Algebra Appl. 58 (1984), 3 – 15. · Zbl 0548.65016
[4] O. Axelsson and V. Eijkhout, Robust vectorizable preconditioners for three-dimensional elliptic difference equations with anisotropy, Algorithms and applications on vector and parallel computers (Amsterdam, 1985 – 86) Spec. Topics Supercomput., vol. 3, North-Holland, Amsterdam, 1987, pp. 279 – 306.
[5] Owe Axelsson and Ben Polman, On approximate factorization methods for block matrices suitable for vector and parallel processors, Linear Algebra Appl. 77 (1986), 3 – 26. Special volume on parallel computing. · Zbl 0587.65013
[6] O. Axelsson and B. Polman, A robust preconditioner based on algebraic substructuring and two-level grids, Robust multi-grid methods (Kiel, 1988) Notes Numer. Fluid Mech., vol. 23, Friedr. Vieweg, Braunschweig, 1989, pp. 1 – 26. · Zbl 0672.65014
[7] Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Computer Science and Applied Mathematics. · Zbl 0484.15016
[8] Tony F. C. Chan and Tarek P. Mathew, The interface probing technique in domain decomposition, SIAM J. Matrix Anal. Appl. 13 (1992), no. 1, 212 – 238. · Zbl 0754.65099
[9] T.F. Chan and P.S. Vassilevski, A framework for block-ILU factorization using block size reduction, CAM Report # 92-29, Department of Mathematics, UCLA, 1992. · Zbl 0819.65018
[10] P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate gradient method, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 220 – 252. , https://doi.org/10.1137/0906018 P. Concus, G. H. Golub, and G. Meurant, Corrigendum: ”Block preconditioning for the conjugate gradient method”, SIAM J. Sci. Statist. Comput. 6 (1985), no. 3, 791. · Zbl 0578.65028
[11] Stephen Demko, William F. Moss, and Philip W. Smith, Decay rates for inverses of band matrices, Math. Comp. 43 (1984), no. 168, 491 – 499. · Zbl 0568.15003
[12] R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis, Math. Comp. 56 (1991), no. 194, 437 – 461. · Zbl 0724.65093
[13] Wolfgang Hackbusch, Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. · Zbl 0595.65106
[14] G.H. Golub and C. van Loan, Matrix computations, The Johns Hopkins University Press, Baltimore and London, 1991. · Zbl 0559.65011
[15] Rob Kettler, Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods, Multigrid methods (Cologne, 1981) Lecture Notes in Math., vol. 960, Springer, Berlin-New York, 1982, pp. 502 – 534. · Zbl 0505.65048
[16] David E. Keyes and William D. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation, SIAM J. Sci. Statist. Comput. 8 (1987), no. 2, S166 – S202. Parallel processing for scientific computing (Norfolk, Va., 1985). · Zbl 0619.65088
[17] Lily Kolotilina and Ben Polman, On incomplete block factorization methods of generalized SSOR type for \?-matrices, Linear Algebra Appl. 177 (1992), 111 – 136. · Zbl 0912.65020
[18] GĂ©rard Meurant, The block preconditioned conjugate gradient method on vector computers, BIT 24 (1984), no. 4, 623 – 633. · Zbl 0556.65023
[19] Ben Polman, Incomplete blockwise factorizations of (block) \?-matrices, Linear Algebra Appl. 90 (1987), 119 – 132. · Zbl 0615.65039
[20] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. · Zbl 0998.65505
[21] P. S. Vassilevski, On some ways of approximating inverses of banded matrices in connection with deriving preconditioners based on incomplete block factorizations, Computing 43 (1990), no. 3, 277 – 296 (English, with German summary). · Zbl 0691.65017
[22] P. S. Vassilevski, Algorithms for construction of preconditioners based on incomplete block-factorizations of the matrix, Internat. J. Numer. Methods Engrg. 27 (1989), no. 3, 609 – 622. · Zbl 0712.65020
[23] P. S. Vassilevski, S. I. Petrova, and R. D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement, SIAM J. Sci. Statist. Comput. 13 (1992), no. 6, 1287 – 1313. · Zbl 0813.65115
[24] Gabriel Wittum, An ILU-based smoothing correction scheme, Parallel algorithms for partial differential equations (Kiel, 1990) Notes Numer. Fluid Mech., vol. 31, Friedr. Vieweg, Braunschweig, 1991, pp. 228 – 240. · Zbl 0744.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.