zbMATH — the first resource for mathematics

A nonlinear instability for \(3\times 3\) systems of conservation laws. (English) Zbl 0820.35093
Summary: The phenomenon of nonlinear resonance provides a mechanism for the unbounded amplification of small solutions of systems of conservation laws. We construct spatially \(2 \pi\)-periodic solutions \(u^ N \in C^ \infty ([0, t_ N] \times \mathbb{R})\) with \(t_ N\) bounded, satisfying \(\| u^ N \|_{L^ \infty ([0,t_ N] \times \mathbb{R})} \to 0\), \(\int^{2 \pi}_ 0 | \partial_ x u^ N(0,x) | dx \leq C\), \(\int^{2 \pi}_ 0 | \partial_ x u^ N(t_ N,x) | dx \geq N\), \(\| u^ N (t_ N,x) \|_{L^ p (\mathbb{R})} \geq N \| u^ N (0,x) \|_{L^ p (\mathbb{R})}\), \(1 \leq p \leq \infty\). The variation grows arbitrarily large, and the sup norm is amplified by arbitrarily large factors.

35L65 Hyperbolic conservation laws
Full Text: DOI
[1] [CS] Conway, E., Smoller, J.: Global solutions of the Cauchy problem for quasilinear first order equations in several space variables. Commun. Pure Appl. Math.19, 95–105 (1966) · Zbl 0138.34701 · doi:10.1002/cpa.3160190107
[2] [D] Diperna, R.J.: Compensated compactness and general systems of conservation laws. Trans. Am. Math. Soc.292, 383–420 (1985) · Zbl 0606.35052 · doi:10.1090/S0002-9947-1985-0808729-4
[3] [G] Glimm, J.: Solutions in the large for nonlinear systems of conservation laws. Commun. Pure Appl. Math.18, 685–715 (1965) · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[4] [GL] Glimm, J., Lax, P.D.: Decay of solutions of systems of nonlinear hyperbolic hyperbolic conservation laws. Memoirs A.M.S.101 (1970) · Zbl 0204.11304
[5] [Je] Jeffrey, A.: Breakdown of the solution to a completely exceptional system of hyperbolic equations. J. Math. Anal. Appl.45, 375–381 (1974) · Zbl 0281.35058 · doi:10.1016/0022-247X(74)90079-1
[6] [Jo] John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math.37, 377–405 (1974) · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[7] [JMR1] Joly, J-L., Metivier, G., Rauch, J.: Resonant one dimensional nonlinear geometric optics. J. Funct. Anal.,114, 106–231 (1993) · Zbl 0851.35023 · doi:10.1006/jfan.1993.1065
[8] [JMR2] Joly, J-L., Metivier, G., Rauch, J.: On the profile equations of nonlinear geometric optics. Seminaire Equations aux Derivees Partielles 1992–1993, Ecole Polytechnique, expose no 1
[9] [JMR3] Joly, J-L., Metivier, G., Rauch, J.: Formal and rigorous nonlinear high frequency hyperbolic waves. In: Murthy, M.K., Spagnolo, S. eds. Nonlinear Hyperbolic Waves and Field Theory. London: Pitman Research Notes in Math. Series, 1992, pp. 121–143 · Zbl 0824.35077
[10] [JMR4] Joly, J-L., Metivier, G., Rauch, J.: Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J.,70, 373–404 (1993) · Zbl 0815.35066 · doi:10.1215/S0012-7094-93-07007-X
[11] [H] Hunter, J.: Strongly nonlinear hyperbolic waves. In: Ballman, J., Jeltsch, R. eds. Notes on Numerical Fluid Dynamics, Vol.24, Nonlinear Hyperbolic Equations, Braunschweig: Vieweg, 1989 · Zbl 0689.35083
[12] [L] Lax, P.D.: Shock waves and entropy. In: Contributions to Nonlinear Analysis, New York: Academic Press, 1971, pp. 603–634
[13] [MR] Majda, A., Rosales, R.: Resonantly interacting weakly nonlinear hyperbolic waves I, a single space variable. Stud. Appl. Math.71, 149–179 (1984) · Zbl 0572.76066
[14] [MRS] Majda, A., Rosales, R., Schonbek, M.: A canonical system of integrodifferential equations arising in resonant nonlinear acoustics. Stud. Appl. Math.79, 205–262 (1988) · Zbl 0669.76103
[15] [NS] Nishida, T., Smoller, J.: Solutions in the large for some nonlinear hyperbolic conservation laws. Commun. Pure Appl. Math.26, 183–200 (1973) · Zbl 0267.35058 · doi:10.1002/cpa.3160260205
[16] [S] Schochet, S.: Resonant nonlinear geometric optics for weak solutions of conservation laws. July 1992, preprint · Zbl 0856.35080
[17] [Y] Young, R.: A Third Order Glimm’s Method. Ph.d. Dissertiation, University of California Davis, 1991, and article with the same title to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.