zbMATH — the first resource for mathematics

On divergence-free wavelets. (English) Zbl 0822.42020
Summary: This paper is concerned with the construction of compactly supported divergence-free vector wavelets. Our construction is based on a large class of refinable functions which generate multivariate multiresolution analyses which includes, in particular, the non tensor product case.
For this purpose, we develop a certain relationship between partial derivatives of refinable functions and wavelets with modifications of the coefficients in their refinement equation. In addition, we demonstrate that the wavelets we construct form a Riesz basis for the space of divergence-free vector fields.

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI
[1] G. Battle and P. Federbush, Divergence-free vector wavelets, Michigan Math. J. 40 (1993) 181–195. · Zbl 0798.42022 · doi:10.1307/mmj/1029004682
[2] G. Battle and P. Federbush, Space-time wavelet basis for the continuity equation, Appl. Comp. Harmon. Anal. 1 (1994) 284–294. · Zbl 0798.42023 · doi:10.1006/acha.1994.1015
[3] G. Battle and P. Federbush, A note on divergence-free vector wavelets, University of Michigan, Preprint (1991). · Zbl 0798.42022
[4] C. de Boor, K. Höllig and S.D. Riemenschneider,Box Splines (Springer, New York, 1993).
[5] J.M. Carnicer, W. Dahmen and J.M. Peña, Local decomposition of refinable spaces, IGPM-Report 112, RWTH Aachen (1995). · Zbl 0859.42025
[6] A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Memoirs AMS 93, no. 453 (1991). · Zbl 0741.41009
[7] C.K. Chui,An Introduction to Wavelets (Academic Press, Princeton, NJ, 1992). · Zbl 0925.42016
[8] A. Cohen and I. Daubechies, Non-separable bidimensional wavelet bases, Rev. Mat. Iberoam. 9 (1993) 51–137. · Zbl 0792.42021
[9] A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Preprint (1994). · Zbl 0879.65102
[10] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wave-lets, Comm. Pure Appl. Math. 45 (1992) 485–560. · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[11] A. Cohen and J.M. Schlenker, Compactly supported bidimensional wavelet bases with hexagonal symmetrie, Preprint AT&T Bell Laboratories, Murray Hill, NJ (1992). · Zbl 0773.41032
[12] M. Dæhlen and T. Lyche, Box splines and applications, Senter for industriforskning, Oslo, Norway, Preprint NTNF it.26534 (1990).
[13] S. Dahlke and I. Weinreich, Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis, Constr. Approx. 9 (1993) 237–262. · Zbl 0777.34015 · doi:10.1007/BF01198005
[14] S. Dahlke and I. Weinreich, Wavelet bases adapted to pseudo-differential operators, Appl. Comp. Harmon. Anal. 1 (1994) 267–283. · Zbl 0806.65112 · doi:10.1006/acha.1994.1014
[15] W. Dahmen, Some remarks on multiscale transformations, stability and biorthogonality, in:Wavelets, Images, and Surface Fitting, eds. P.J. Laurent, A. le Méhauté and L.L. Schumaker (A.K. Peters, Wessely, 1994) pp. 157–188. · Zbl 0815.65070
[16] W. Dahmen, Stability of multiscale transformations, IGPM-Report 109, RWTH Aachen (1994). · Zbl 0815.65070
[17] W. Dahmen and C.A. Micchelli, Translates of multivariate splines, Lin. Alg. Appl. Math. 52/53 (1983) 217–234. · Zbl 0522.41009
[18] W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, in preparation. · Zbl 0882.65148
[19] I. Daubechies,Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61 (1992). · Zbl 0776.42018
[20] P. Federbush, Navier and Stokes meet the wavelet, Commun. Math. Phys. 155 (1993) 219–248. · Zbl 0795.35080 · doi:10.1007/BF02097391
[21] P. Federbush, Local strong solution of the Navier-Stokes equations in terms of local estimates, University of Michigan, Preprint (1991).
[22] R.-Q. Jia and J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993) 2–23. · Zbl 0778.41016 · doi:10.1006/jath.1993.1002
[23] R.-Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, in:Curves and Surfaces, eds. P.J. Laurent, A. le Méhauté and L.L. Schumaker (Academic Press, New York, 1991). · Zbl 0765.65023
[24] P. Lancaster and M. Tismenetsky,Theory of Matrices (Academic Press, Orlando, 1985). · Zbl 0558.15001
[25] P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle, Rev. Mat. Iberoam. 8 (1992) 221–236. · Zbl 0874.42022
[26] S. Mallat, Multiresolution approximation and wavelet orthonormal bases ofL 2, Trans. Amer. Math. Soc. 315 (1989) 69–88. · Zbl 0686.42018
[27] Y. Meyer,Ondelettes et Opérateurs I (Hermann, Paris, 1990). · Zbl 0694.41037
[28] S.M. Nikol’skiim,Approximation of Functions of Several Variables and Imbedding Theorems (Springer, Berlin, 1975).
[29] S.D. Riemenschneider and Z.W. Shen, Box-splines, cardinal series and wavelets, in:Approximation Theory and Functional Analysis, ed. C.K. Chui (Academic Press, Boston, 1991) pp. 133–149.
[30] S.D. Riemenschneider and Z.W. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992) 18–38. · Zbl 0772.41019 · doi:10.1016/0021-9045(92)90129-C
[31] J. Stöckler, Multivariate wavelets, in:Wavelets: A Tutorial in Theory and Applications, ed. C.K. Chui (Academic Press, Princeton, NJ, 1992) pp. 325–355.
[32] R.M. Young,An Introduction to Nonharmonic Fourier Series (Academic Press, Princeton, NJ, 1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.