zbMATH — the first resource for mathematics

Consistent parameter estimation for partially observed diffusions with small noise. (English) Zbl 0822.62068
Summary: We provide a consistency result for the MLE for partially observed diffusion processes with small noise intensities. We prove that if the underlying deterministic system enjoys an identifiability property, then any MLE is close to the true parameter if the noise intensities are small enough. The proof uses large deviations limits obtained by PDE vanishing viscosity methods. A deterministic method of parameter estimation is formulated. We also specialize our results to a binary detection problem, and compare deterministic and stochastic notions of identifiability.

62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
60F10 Large deviations
Full Text: DOI
[1] Baras, J. S., and La Vigna, A. (1987), Real-time sequential hypothesis testing for diffusion signals, Proc. 26th IEEE CDC, Los Angeles, 1987, pp. 1153-1157, IEEE Press, New York.
[2] Barles, G., and Perthame, B. (1987), Discontinuous solutions of deterministic optimal stopping time problems, Modél. Math. Anal. Numér. 21:557-579. · Zbl 0629.49017
[3] Campillo, F., and Le Gland, F. (1989), MLE for partially observed diffusions: direct maximization vs. the EM algorithm, Stochastic Process. Appl. 33:245-274. · Zbl 0709.62076 · doi:10.1016/0304-4149(89)90041-0
[4] Clark, J. M. C. (1978), The design of robust approximations to the stochastic differential equations of non-linear filtering, in: Communication Systems and Random Processes Theory (ed. J. K. Skwirzynski), pp. 721-734, Sijthoff and Nordhoff, Alphen aan den Rijn.
[5] Crandall, M. G., Evans, L. C., and Lions, P. L. (1984), Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282:487-502. · Zbl 0543.35011 · doi:10.1090/S0002-9947-1984-0732102-X
[6] Crandall, M. G., and Lions, P. L. (1983), Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277:1-42. · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[7] Davis, M. H. A. (1980), On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrsch. Verw. Gebiete 54:125-139. · Zbl 0431.60043 · doi:10.1007/BF00531444
[8] Dembo, A., and Zeitouni, O. (1986), Parameter estimation of partially observed continuous-time stochastic processes via the EM algorithm, Stochastic Process. Appl. 23:91-113. · Zbl 0608.62095 · doi:10.1016/0304-4149(86)90018-9
[9] Elliott, R. J. (1982), Stochastic Calculus and Applications, Springer-Verlag, New York. · Zbl 0503.60062
[10] Evans, L. C., and Ishii, H. (1985), A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:1-20. · Zbl 0601.60076
[11] Fleming, W. H., and Mitter, S. K. (1982), Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics 8:63-77. · Zbl 0493.93047
[12] Freidlin, M. I., and Wentzell, A. D. (1984), Random Perturbations of Dynamical Systems, Springer-Verlag, New York. · Zbl 0522.60055
[13] Friedman, A. V. (1964), Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0144.34903
[14] Hijab, O. (1984), Asymptotic Bayesian estimation of a first order equation with small diffusion, Ann. Probab. 12:890-902. · Zbl 0543.60034 · doi:10.1214/aop/1176993238
[15] James, M. R. (1988), Asymptotic Nonlinear Filtering and Large Deviations with Application to Observer Design, Ph.D. Dissertation, University of Maryland (SRC Technical Report PhD-88-1, Systems Research Center).
[16] James, M. R. (1991), Finite time observer désign by probabilistic-variational methods, SIAM J. Control Optim. 29:954-967. · Zbl 0733.93011 · doi:10.1137/0329053
[17] James, M. R., and Baras, J. S. (1988), Nonlinear filtering and large deviations: a PDE-control theoretic approach, Stochastics 23:391-412. · Zbl 0642.93059
[18] Pardoux, E. (1991), Filtrage non-linéaire et équations aux dérivées partielles stochastiques associées, in: Ecole d’Eté de Probabilités de Saint-Flour XIX, 1989 (ed. P. L. Hennequin), pp. 69-163 (LNM, 1464), Springer-Verlag, New York.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.