Zhang, Linghai Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations. (English) Zbl 0823.35145 Commun. Partial Differ. Equations 20, No. 1-2, 119-127 (1995). The author studies the optimal decay rate of global solutions to the initial value problem for the two-dimensional incompressible Navier- Stokes equations \[ u_ t+ u\nabla u- \Delta u+ \nabla p=0, \quad \nabla\cdot u=0, \quad u(x,0)= u_ 0(x), \qquad x\in \mathbb{R}^ 2. \] He proves, using Fourier transform methods, that a solution satisfies the estimate \(\| u(t) \|_{L^ 2}\leq C(1+ t)^{-1/2}\), provided \(u_ 0\in L^ 1\cap H^ 2\) and \(\int_{\mathbb{R}^ 2} u_ 0 (x)dx \neq 0\). Reviewer: K.Pflüger (Berlin) Cited in 26 Documents MSC: 35Q30 Navier-Stokes equations 35B40 Asymptotic behavior of solutions to PDEs Keywords:optimal decay rate of global solutions; two-dimensional incompressible Navier-Stokes equations; Fourier transform PDF BibTeX XML Cite \textit{L. Zhang}, Commun. Partial Differ. Equations 20, No. 1--2, 119--127 (1995; Zbl 0823.35145) Full Text: DOI OpenURL References: [1] DOI: 10.1002/cpa.3160350604 · Zbl 0509.35067 [2] DOI: 10.1007/BF00752111 · Zbl 0602.76031 [3] DOI: 10.1080/03605308608820443 · Zbl 0607.35071 [4] DOI: 10.1112/jlms/s2-35.2.303 · Zbl 0652.35095 [5] Linghai Zhang, (China) Advances in Math 22 pp 469– (1993) [6] Temam, R. 1979. ”Navier-Stokes Equations, Theory and Numerical Analysis”. North-Holland, New York: Amsterdam. · Zbl 0426.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.