×

Loglinear multidimensional IRT models for polytomously scored items. (English) Zbl 0825.62936


MSC:

62P15 Applications of statistics to psychology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akaike, H. (1977). On entropy maximization principle. In P. R. Krisschnaiah (Ed.),Applications of statistics (pp. 27–41). Amsterdam: North Holland. · Zbl 0388.62008
[2] Andersen, E. B. (1973). Conditional inference and multiple choice questionnaires.British Journal of Mathematical and Statistical Psychology, 26, 31–44.
[3] Andersen, E. B. (1983). A general latent structure model for contingency table data. In H. Wainer & S. Messick (Eds.),Principals of modern psychological measurement (pp. 117–138). Hillsdale, NJ: Lawrence Erlbaum.
[4] Andrich, D. (1978). A rating scale formulation for ordered response categories.Psychometrika, 43, 561–573. · Zbl 0438.62086
[5] Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters.Psychometrika, 47, 105–113.
[6] Baglivo, J., Olivier, D., & Pagano, M. (1992). Methods for exact goodness-of-fit tests,Journal of the American Statistical Association, 87, 464–469. · Zbl 0850.62392
[7] Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975).Discrete multivariate analysis. Cambridge, MA: MIT Press. · Zbl 0332.62039
[8] Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories.Psychometrika, 37, 29–51. · Zbl 0233.62016
[9] Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test.Psychological Review, 97, 404–431.
[10] Cox, M. A. A., & Placket, R. L. (1980). Small samples in contingency tables.Biometrika, 67, 1–13. · Zbl 0427.62033
[11] Cressie, N., & Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models.Psychometrika, 48, 129–142. · Zbl 0533.62092
[12] de Leeuw, J., & Verhelst, N. D. (1986). Maximum likelihood estimation in generalized Rasch models.Journal of Educational Statistics, 11, 183–196.
[13] Duncan, O. D. (1984). Rasch measurement: Further examples and discussion. In C. F. Turner & E. Martin (Eds.),Surveying subjective phenomena, Vol. 2 (pp. 367–403). New York: Russell Sage Foundation.
[14] Duncan, O. D., & Stenbeck, M. (1987). Are Likert scales unidimensional?Social Science Research, 16, 245–259.
[15] Embretson, S. E. (1984). A general latent trait model for response processes.Psychometrika, 49, 175–186.
[16] Embretson, S. E. (1985). Multicomponent latent trait models for test design. In S. E. Embretson (Ed.),Test design: Developments in psychology and psychometrics (pp. 195–218). Orlando, FL: Academic Press.
[17] Embretson, S. E. (1991).Measuring and validating the cognitive modifiability construct. Poster Presentation at the Annual Meeting of the American Educational Research Association.
[18] Fischer, G. H. (1972). A measurement model for the effect of mass-media.Acta Psychologica, 36, 207–220.
[19] Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research.Acta Psychologica, 36, 359–374.
[20] Fischer, G. H. (1974).Einführung in die Theorie psychologischer Tests [Introduction to the theory of psychological test]. Bern: Huber (In German).
[21] Fischer, G. H. (1976). Some probabilistic models for measuring change. In D. N. M. de Gruyter & L. J. Th. van der Kamp (Eds.),Advances in psychological and educational measurement (pp. 97–110). New York: Wiley.
[22] Fischer, G. H., & Forman, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters.Applied Psychological Measurement, 6, 397–416.
[23] Forbes, A. R. (1964). An item analysis of the advanced matrices.British Journal of Educational Psychology, 34, 1–14.
[24] Frederiksen, J. R. (1982). A componential theory of reading skills and their interactions. In R. J. Sternberg (Ed.),Advances in the psychology of human intelligence Vol. 1 (pp. 125–180). Hillsdale, NJ: Lawrence Erlbaum.
[25] Glas, CA. W., & Verhelst, N. D. (1989). Extensions of the Partial Credit Model.Psychometrika, 54, 635–660. · Zbl 0732.62104
[26] Haberman, S. J. (1977). Log-linear models and frequency tables with small cell counts,Annals of Statistics, 5, 1124–1147. · Zbl 0371.62150
[27] Haberman, S. J. (1979).Analysis of qualitative data: New developments, Vol. 2. New York: Academic Press.
[28] Hunt, E. B. (1974). Quote the Raven? Nevermore! In L. W. Greg (Ed.),Knowledge and cognition (pp. 129–158). Hillsdale, NJ: Lawrence Erlbaum.
[29] Imrey, P. B., Koch, G. C., & Stokes, M. E. (1981). Categorical data analysis: Some reflections on the loglinear model and logistic regression. Part I: Historical and methodological overview.International Statistical Overview, 49, 265–283. · Zbl 0478.62003
[30] Kelderman, H. (1984). Loglinear Rasch model tests.Psychometrika, 49, 223–245. · Zbl 0573.62097
[31] Kelderman, H. (1989). Item bias detection using loglinear IRT.Psychometrika, 54, 681–697. · Zbl 04567845
[32] Kelderman, H. (1992). Computing maximum likelihood estimates of loglinear IRT models from marginal sums.Psychometrika, 57, 437–450. · Zbl 0850.62863
[33] Kelderman, H., & Steen, R. (1988).Logimo: Loglinear IRT modeling [Program Manual]. Enschede, The Netherlands: University of Twente.
[34] Koehler, K. J. (1977).Goodness-of-fit statistics for large sparse multinomials. Unpublished doctoral dissertation, University of Minnesota, School of Statistics.
[35] Koehler, K. J. (1986). Goodness-of-fit tests for log-linear models in sparse contingency tables.Journal of the American Statistical Association, 81, 483–493. · Zbl 0625.62033
[36] Lancaster, H. O. (1961). Significance tests in discrete distributions.Journal of the American Statistical Association, 56, 223–234. · Zbl 0104.13201
[37] Lehmann, E. L. (1983).The theory of point estimation. New York: John Wiley. · Zbl 0522.62020
[38] Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence.Intelligence, 7, 107–127.
[39] Masters, G. N. (1982). A Rasch model for partial credit scoring.Psychometrika, 47, 149–174. · Zbl 0493.62094
[40] Muraki, E. (1990). Fitting a polytomous item response model to Likert type data.Applied Psychological Measurement, 14, 59–71.
[41] Newell, A. (1977). On the analysis of human problem solving protocols. In P. N. Johnson-Laird & P. C. Wason,Thinking (pp. 46–61). London: Cambridge University Press.
[42] Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations.Econometrica, 16, 1–32. · Zbl 0034.07602
[43] Rao, C. R. (1973).Linear statistical inference and its applications. New York: Wiley. · Zbl 0256.62002
[44] Rasch, G. (1961). On general laws and the meaning of measurement in psychology.Proceedings of the fourth Berkeley symposium on mathematical statistics and probability (pp. 321–333). Berkeley, CA: University of California Press. · Zbl 0107.36805
[45] Rasch, G. (1980).Probabilistic models for some intelligence and attainment tests. Chicago: The University of Chicago Press.
[46] Raven, J., Raven, J. C., & Court, J. H. (1991).Manual for Raven’s progressive matrices and vocabulary scales (section 1): General overview. Oxford: Oxford Psychologists Press.
[47] Read, T. R. C., & Cressie, N. (1988).Goodness-of-fit statistics for discrete multivariate data. New York: Springer-Verlag. · Zbl 0663.62065
[48] Rost, J. (1988). Measuring attitudes with a threshold model drawing on a traditional scaling concept.Applied Psychological Measurement, 12, 397–409.
[49] Samejima, F. (1972). A general model for free-response data.Psychometrika Monograph No. 18, 37 (4, Pt. 2). · Zbl 0248.92009
[50] Scheiblechner, H. (1972). Das lernen und lòsen komplexer Denkaufgaben [Learning and solving complex cognitive problems].Zeitschrift für experimentelle und Angewandte Psychologie, 19, 476–506. (In German)
[51] Spada, H. (1976).Modelle des Denkens und Lernens [Models of thinking and learning]. Bern: Huber. (In German) · Zbl 0346.92021
[52] Stenner, A. J., Smith, III, M., & Burdick, D. (1983). Toward a theory of construct definition.Journal of Educational Measurement, 20, 303–316.
[53] Sternberg, R. J. (Ed.). (1982).Advances in the psychology of human intelligence, Vol. 1. Hillsdale, NJ: Lawrence Erlbaum.
[54] Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items.Psychometrika, 49, 501–519.
[55] Theunissen, T. J. J. M. (1985). Binary programming and test design.Psychometrika, 50, 411–420.
[56] Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model.Scandinavian Journal of Statistics, 9, 23–30. · Zbl 0484.62115
[57] van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model.Psychometrika, 47, 123–140. · Zbl 0489.62098
[58] van der Linden, W. J., & Boekkooi-Timminga, E. (1989). A maximum model for test design with practical constraints.Psychometrika, 54, 237–248. · Zbl 04550495
[59] Wilson, M. (1989).The partial order model. Paper presented at the Fifth International Objective Measurement Workshop, Berkeley, CA.
[60] Wilson, M. (1990).An extension of the partial credit model to incorporate diagnostic information. Unpublished manuscript, University of California, Graduate School of Education, Berkeley, CA.
[61] Wright, B. D., & Masters, G. N. (1982).Rating scale analysis. Chicago: MESA Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.