×

The elliptic paraboloid failure criterion for cellular solids and brittle foams. (English) Zbl 0825.73521


MSC:

74R99 Fracture and damage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Patel, M. R., Finnie, I.: Structural features and mechanical properties of rigid celluar plastics. J. Materials5, 909-932 (1970). · doi:10.1007/BF00574864
[2] Abd el Sayed, F. K., Jones, R., Burgess, I. W.: Theoretical approach to the deformation of Hoeycomb based composite materials. Composites10, 209-214 (1979). · doi:10.1016/0010-4361(79)90021-1
[3] Gibson, L. I., Ashby, M. F.: The mechanics of three-dimensional cellular materials. Proc. Roy. Soc. London, Ser. A,382, Nr. 1782, 43-59 (1982). · doi:10.1098/rspa.1982.0088
[4] Ashby, M. F.: The mechanical properties of cellular solids. Metall. Trans., Ser. A,14, 1755-1769 (1983). · doi:10.1007/BF02645546
[5] Menges, G., Knipschild, F.: Estimation of mechanical properties for rigid polyurethane foams. Polymer Engng. and Science15 (8), 623-627 (1975). · doi:10.1002/pen.760150810
[6] Warren, W. E., Kraynik, A. M.: The linear elastic properties of open-cell foams. J. Appl. Mech.55 (2), 341-346 (1988). · doi:10.1115/1.3173680
[7] Green, D. J.: Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres. J. Am. Ceramic Soc.68 (7), 403-407 (1985). · doi:10.1111/j.1151-2916.1985.tb10153.x
[8] Shaw, M. C., Sata, T.: The plastic behaviour of cellular materials. Int. J. Mech. Sci.8, (3), 469-478 (1966). · doi:10.1016/0020-7403(66)90019-1
[9] Zaslawsky, M.: Multiaxial-stress studies on rigid polyurethane foam. Exp. Mechanics13 (2), 70-76 (1973). · doi:10.1007/BF02322385
[10] Wu, E. M.: Phenomenological anisotropic failure criterion. In: Mechanics of composite materials (Sendeckyj, G. P., ed.), pp. 353-431. New York: Academic Press 1974.
[11] Gibson, L. J., Ashby, M. F., Zhang, J., Triantafillou, T. C.: Failure surfaces for cellular materials under multiaxial loads ? I. Modelling. Int. J. Mech. Sci.31 (9), 635-663 (1989). · doi:10.1016/S0020-7403(89)80001-3
[12] Triantafillou, T. C., Zhang, J., Sherclift, T. L., Gibson, L. J., Ashby, M. F.: Failure surfaces for cellular materials under multiaxial loads ? II. Comparison of models with experiment. Int. J. Mech. Sci.31 (9), 665-678 (1979). · doi:10.1016/S0020-7403(89)80002-5
[13] Triantafillou, T. C., Gibson, L. J.: Multiaxial failure criteria for brittle foams. Int. J. Mech. Sci.32 (6), 479-496 (1990). · doi:10.1016/0020-7403(90)90154-B
[14] Theocaris, P. S.: Failure characterization of anisotropic materials by means of the elliptic paraboloid failure criterion. Uspechi Mekhanikii (Adv. Mechanics)10 (3), 83-102 (1987).
[15] Coulomb, C. A.: Essai sur l’application des r?gles des maximis et minimis ? quelques problemes de statique relatifs ? l’architecture. M?moires de Math?matiques et de Physique, Acad. Roy. des Sciences, par divers savants,7, 343-382 (1773).
[16] Tschoegl, N. W.: Failure surface in principal stress space. J. Polymer Sci. Part C, POLYMER SYMPOSIA (Kausch, H. H., ed.),32, pp. 239-267. New York: Interscience 1971.
[17] Theocaris, P. S.: Generalized failure criteria in the principal stress space. Theoretical and Applied Mechanics (Theoreticha i Prilojnia Mekhanika) Bulgarian Acad. Sciences19 (2), 74-104 (1987).
[18] Theocaris, P. S., Philippides, Th.: The paraboloid failure surface of initially anisotropic elastic bodies. J. Reinf. Plastics and Composites6 (4), 378-395 (1987). · doi:10.1177/073168448700600407
[19] Theocaris, P. S.: Failure criteria for transtropic pressure dependent materials: the fiber composites. Rheologica Acta27 (5), 451-465 (1988). · doi:10.1007/BF01329344
[20] Theocaris, P. S.: The paraboloid failure surface for the general orthotropic material. Acta Mechanica79 (1), 53-79 (1989). · Zbl 0688.73069 · doi:10.1007/BF01181480
[21] Theocaris, P. S.: The elliptic paraboloid failure surface for transversely isotropic materials off-axis loaded. Rheologica Acta28 (2), 154-165 (1989). · Zbl 0678.73070 · doi:10.1007/BF01356976
[22] Bridgman, P. W.: Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure. New York: McGraw-Hill 1952. · Zbl 0049.25606
[23] Bridgman, P. W.: Considerations on rupture under triaxial stress. Mech. Engineering, 107-111 (1939).
[24] Wu, E. M.: Optimal experimental measurements of anisotropic failure tensors. J. Composite Materials6 (5), 472-489 (1972).
[25] Theocaris, P. S., Philippides, T.: On the validity of the tensor polynomial failure theory with stress-interaction terms omitted. Composites Sci. Technol.40 (2), 181-191 (1991). · doi:10.1016/0266-3538(91)90096-8
[26] Caddell, R. M., Kim, J. W.: Influence of hydrostatic pressure on the yield strength of anisotropic polycarbonate. Int. J. Mech. Sci.23 (2), 99-104 (1981). · doi:10.1016/0020-7403(81)90074-6
[27] Tsai, S. W., Wu, E. M.: A general theory of strength for anisotropic materials. J. Comp. Mat.5, 58-80 (1971). · doi:10.1177/002199837100500106
[28] Tsai, S. W., Hahn, H. T., in: Introduction to composite materials. Lancaster Pen: Technomic 1985.
[29] Narayanaswami, R., Adelman, H. M.: Evaluation of the tensor polynomial and Hoffman strength theories for composite materials. J. Comp. Mat.11, 366-377 (1977). · doi:10.1177/002199837701100401
[30] Theocaris, P. S.: Failure behavior of paper sheets. J. Reinforced Plastics and Composites8 (6), 601-626 (1989). · doi:10.1177/073168448900800604
[31] Theocaris, P. S.: Failure modes of closed cell polyurethane foams. J. Reinf. Plastics and Composites (to appear).
[32] Theocaris, P. S.: Properties and experimental verification of the paraboloid failure criterion with transversely isotropic materials. J. Material Sci.25 (5), 1076-1085 (1990).
[33] Wang, J.: Reticulated vitreous carbon ? A new versatile electrode material. Electrochimica Acta26 (12), 1721-1726 (1981). · doi:10.1016/0013-4686(81)85156-0
[34] Thorton, P. H., Magee, C. L.: The deformation of Aluminum foams. Metallurgical Transactions6 (A), 1253-1263 (1975). · doi:10.1007/BF02658535
[35] McClintock, F. A., Argon, A. S.: Mechanical behavior of materials. Reading Mass.: Addison-Wesley 1966.
[36] Hill, R.: The mathematical theory of plasticity. Oxford: at the Clarendon Press 1956.
[37] Theocaris, P. S., Prassianakis, J.: The Mohr envelope of failure for concrete: A study of its tension-compression part. Magazine for Concrete Research26 (87), 73-82 (1974).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.