×

zbMATH — the first resource for mathematics

Self-scheduled \({\mathcal H}_ \infty\) control of linear parameter-varying systems: A design example. (English) Zbl 0825.93169

MSC:
93B36 \(H^\infty\)-control
93B35 Sensitivity (robustness)
93C95 Application models in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
Keywords:
time-dependent
Software:
LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apkarian, P.; Gahinet, P., A convex characterization of gain-scheduled H∞ controllers, IEEE trans. autom. control, AC-40, (1995) · Zbl 0826.93028
[2] Arzelier, D.; Bernussou, J.; Garcia, J.M., About quadratic stabilizability of generalized linear systems, (), 914-920
[3] Barmish, B.R., Stabilization of uncertain systems via linear control, IEEE trans. autom. control, AC-27, 848-850, (1982) · Zbl 0554.93054
[4] Barmish, B.R., Necessary and sufficient conditions for quadratic stabilizability of an uncertain linear system, J. optim. theory applic., 46, 399-408, (1985) · Zbl 0549.93045
[5] Becker, G.; Packard, A.; Philbrick, D.; Balas, G., Control of parametrically-dependent linear systems: a single quadratic Lyapunov approach, (), 2795-2799
[6] Boyd, S.; ElGhaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, ()
[7] Gahinet, P.; Apkarian, P., A linear matrix inequality approach to H∞ control, Int. J. robust and nonlinear control, 4, 421-448, (1994) · Zbl 0808.93024
[8] Gahinet, P.; Nemirovski, A., General-purpose LMI solvers with benchmarks, (), 3162-3165
[9] Gahinet, P.; Nemirovski, A.; Laub, A.J.; Chilali, M., ()
[10] Gahinet, P., Explicit controller formulas for LMI-based H∞ synthesis, (), 2396-2400 · Zbl 1129.83335
[11] Nesterov, Y.E.; Nemirovski, A.S., Interior point polynomial methods in convex programming: theory and applications, ()
[12] Packard, A., Gain scheduling via linear fractional transformations, Syst. control lett., 22, 79-92, (1994) · Zbl 0792.93043
[13] Packard, A.; Becker, G., Quadratic stabilization of parametrically-dependent linear systems using parametrically-dependent linear, dynamic feedback, Adv. robust and nonlinear control syst. DSC, 43, 29-36, (1992)
[14] Packard, A.; Zhou, K.; Pandey, P.; Becker, G., A collection of robust control problems leading to lmis, (), 1245-1250
[15] Packard, A.; Pandey, P.; Leonhardson, J.; Balas, G., Optimal, constant I/O similarity scaling for full-information and state-feedback control problems, Syst. control lett., 19, 271-280, (1992) · Zbl 0772.49021
[16] Petersen, I.R., Notions of stabilizability and controllability for a class of uncertain linear systems, Int. J. control, 46, 409-422, (1987) · Zbl 0625.93010
[17] Ravi, R.; Nagpal, R.M.; Khargonekar, P.P., H∞ control of linear time-varying systems: a state-space approach, SIAM J. control optim., 29, 1394-1413, (1991) · Zbl 0741.93017
[18] Shamma, J.F.; Athans, M., Gain scheduling: potential hazards and possible remedies, (), 516-521
[19] Shamma, J.F.; Athans, M., Guaranteed properties of gain scheduled control for linear parameter-varying plants, Automatica, 27, 559-564, (1991) · Zbl 0754.93022
[20] Shamma, J.F.; Cloutier, J.R., A linear parameter-varying approach to gain scheduled missile autopilot design, (), 1317-1321
[21] Zhou, K.; Khargonekar, P.P.; Stoustrup, J.; Niemann, H.H., Robust stability and performance of uncertain systems in state space, (), 662-667
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.