×

On an inverse eigenvalue problem for unitary Hessenberg matrices. (English) Zbl 0826.15008

The authors consider the inverse eigenvalue problem for unitary Hessenberg matrices. It is proved that if \(\{\lambda_k\}^n_{k = 1}\) and \(\{\mu_k\}^{n - 1}_{k = 0}\) are two sets of strictly interlacing points on the unit circle in the complex plane, then there exists a unique unitary Hessenberg matrix \(H = H (\gamma_1, \gamma_2, \ldots, \gamma_n)\) such that the spectrum of the matrix \(\lambda (H) = \{\lambda_k\}^n_{k = 1}\) and \(\lambda (H_{n - 1}') = \{\mu_k\}^{n - 1}_{k = 1}\), where \(H_{n - 1}' = H (\gamma_1, \gamma_2, \ldots, \gamma_{n - 2}, \rho_{n - 1})\) and \(\rho_{n - 1} = (\gamma_{n - 1} + \overline {\mu}_0 \gamma_n)/(1 + \overline {\mu}_0 \overline {\gamma}_{n - 1} \gamma_n)\). A procedure for constructing the matrix \(H (\gamma_1, \gamma_2, \ldots, \gamma_n)\) is presented.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15B57 Hermitian, skew-Hermitian, and related matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ammar, G. S.; Gragg, W. B.; Reichel, L., Constructing a unitary Hessenberg matrix from spectral data, (Golub, G. H.; Van Dooren, P., Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms (1991), Springer-Verlag: Springer-Verlag New York), 385-396 · Zbl 0736.65027
[2] Boley, D.; Golub, G. H., A survey of matrix inverse eigenvalue problems, Inverse Problems, 3, 595-622 (1987) · Zbl 0633.65036
[4] Delsarte, P.; Genin, Y., Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: Basic results, SIAM J. Matrix Anal. Appl., 12, 220-238 (1991) · Zbl 0728.65020
[5] Delsarte, P.; Genin, Y., Tridiagonal approach to the algebraic environment of Toeplitz matrices, part II: Zero and eigenvalue problems, SIAM J. Matrix Anal. Appl., 12, 432-448 (1991) · Zbl 0753.15015
[6] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hopkins U.P · Zbl 0733.65016
[7] (Nikolaev, E. S., Numerical Methods in Linear Algebra (1982), Moscow Univ. Press), 16-32 · Zbl 0777.65013
[8] Gragg, W. B.; Harrod, W. J., The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math., 44, 317-335 (1984) · Zbl 0556.65027
[9] Gragg, W. B.; Reichel, L., A divide and conquer method for unitary and orthogonal eigenproblems, Numer. Math., 57, 695-718 (1990) · Zbl 0708.65039
[10] Reichel, L.; Ammar, G. S.; Gragg, W. B., Discrete least square approximation by trigonometric polynomials, Math. Comp., 57, 273-289 (1991) · Zbl 0733.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.