×

A characterization of Hida distributions. (English) Zbl 0826.46035

The authors characterize the space \(({\mathcal S})^*\) of Hida distributions in terms of analytic properties of the Fourier transformation of its elements.

MSC:

46F25 Distributions on infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Albeverio, S; Hida, T; Potthoff, J; Streit, L, The vaccum of the Høegh-krohn model as a generalized white noise functional, Phys. lett. B, 217, 511-514, (1989)
[2] Albeverio, S; Hida, T; Potthoff, J; Röckner, M; Streit, L, Dirichlet forms in terms of white noise analysis construction and QFT examples, I, Rev. math. phys., 1, 291-312, (1990) · Zbl 0708.60099
[3] Albeverio, S; Hida, T; Potthoff, J; Röckner, M; Streit, L, Dirichlet forms in terms of white noise analysis. II. construction of infinite dimensional diffusions and QFT examples, Rev. math. phys., 1, 313-323, (1990) · Zbl 0708.60100
[4] Albeverio, S; Høegh-Krohn, R, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. wahrsch. verw. gebiete, 40, 1-57, (1977) · Zbl 0342.60057
[5] Bargmann, V, On a Hilbert space of analytic functions and an associated integral transform, part I, Comm. pure appl. math., 14, 187-214, (1961) · Zbl 0107.09102
[6] Chow, P.L, Generalized solution of some parabolic equations with a random drift, J. appl. math. optim., 20, 81-96, (1989)
[7] Chow, P.L, Stochastic differential equations in infinite dimensions, () · Zbl 0727.60066
[8] Dwyer, T, Partial differential equations in fischer-Fock spaces for the Hilbert-Schmidt holomorphy type, Bull. amer. math. soc., 77, 725-730, (1971) · Zbl 0222.46019
[9] de Faria, M; Kuo, H.-H, A delta white noise functional, Acta appl. math., 17, 287-298, (1989) · Zbl 0702.46041
[10] de Faria, M; Potthoff, J; Streit, L, The Feynman integral as a hida distribution, J. math. phys., 32, 2123-2127, (1991) · Zbl 0754.46050
[11] Fröhlich, J, Schwinger functions and their generating functionals, II, Adv. in math., 23, 119-180, (1977) · Zbl 0345.46058
[12] Gel’fand, I.M; Vilenkin, N.Y, Generalized functions, IV, (1964), Academic Press New York/London
[13] Gielerak, R, On the DLR equation for the two-dimensional sine-Gordon model, J. math. phys., 27, 2892-2902, (1986) · Zbl 0645.35081
[14] Glimm, J; Jaffe, A, Quantum physics: A functional integral point of view, (1981), Springer Berlin/Heidelberg/New York · Zbl 0461.46051
[15] Herbst, I, On canonical quantum field theories, J. math. phys., 17, 1210-1221, (1976)
[16] Hida, T, Stationary stochastic processes, (1970), Princeton Univ. Press Princeton, NJ · Zbl 0214.16401
[17] Hida, T, Analysis of Brownian functionals, Carleton mathematical lecture notes, Vol. 13, (1975) · Zbl 1089.60522
[18] Hida, T, Brownian motion, (1980), Springer Berlin/Heidelberg/New York · Zbl 0432.60002
[19] Hida, T, Generalized Brownian functionals, () · Zbl 0565.60050
[20] Hida, T, Brownian functionals and the rotation group, () · Zbl 0672.60046
[21] {\scT. Hida, H.-H. Kuo, J. Potthoff, and L. Streit}, White noise: An infinite dimensional calculus, monograph in preparation. · Zbl 0771.60048
[22] Hida, T; Kuo, H.-H; Potthoff, J; Streit, L, White noise—mathematics and applications, (1990), World Scientific Singapore · Zbl 0812.00015
[23] Hida, T; Potthoff, J; Streit, L, Dirichlet forms and white noise analysis, Comm. math. phys., 116, 235-245, (1988) · Zbl 0661.31019
[24] Hida, T; Potthoff, J; Streit, L, White noise analysis and applications, () · Zbl 0722.60034
[25] Kondrat’ev, Ju.G, Nuclear spaces of entire functions in problems of infinite-dimensional analysis, Soviet math. dokl., 22, 588-592, (1980) · Zbl 0474.46033
[26] Korezlioglu, H; Ustunel, A.S, New class of distributions on Wiener spaces, () · Zbl 0759.60061
[27] Krée, P, Solutions faibles d’équations aux derivées fonctionelles, I, () · Zbl 0301.46030
[28] Krée, P, Solutions faibles d’équations aux derivées fonctionelles, II, () · Zbl 0314.46039
[29] Krée, P, Calcul d’intégrales et de dérivées en dimension infinie, J. funct. anal., 31, 150-186, (1979) · Zbl 0417.46048
[30] Krée, M; Krée, P, Continuité de la divergence dans LES espaces de Sobolev relatifs à l’espace de Wiener, C. R. acad. sci. Paris, 296, 833-836, (1983) · Zbl 0531.46034
[31] Kubo, I; Takenaka, S, Calculus on Gaussian white noise, I, (), 376-380 · Zbl 0459.60068
[32] Kubo, I; Takenaka, S, Calculus on Gaussian white noise, II, (), 411-416 · Zbl 0475.60064
[33] Kubo, I; Yokoi, Y, A remark on the space of testing random variables in the white noise calculus, Nagoya math. J., 115, 139-149, (1989) · Zbl 0672.60080
[34] Kuo, H.-H, Gaussian measures in Banach spaces, ()
[35] Kuo, H.-H, Donsker’s delta function as a generalized Brownian functional and its application, () · Zbl 0522.60071
[36] Kuo, H.-H, Brownian functionals and applications, Acta appl. math., 1, 175-188, (1983) · Zbl 0527.60036
[37] Kuo, H.-H; Potthoff, J, Anticipating stochastic differential equations, (), preprint, 1989 · Zbl 0726.60055
[38] Kuo, H.-H; Potthoff, J; Streit, L, A characterization of white noise test functionals, Nagoya math. J., 121, 185-194, (1991) · Zbl 0717.60051
[39] Lee, Y.-J, Generalized functions on infinite dimensional spaces and its application to white noise calculus, J. funct. anal., 82, 429-464, (1989) · Zbl 0683.46035
[40] Lee, Y.-J, Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, J. funct. anal., (1989), in press
[41] Linnik, Ju.V; Ostrovskii, I.V, Decomposition of random variables and vectors, (1977), Amer. Math. Soc Providence, RI · Zbl 0358.60020
[42] Meyer, P.A, Quelques résultats analytiques sur le semigroupe d’Ornstein-Uhlenbeck en dimension infinie, () · Zbl 0514.60076
[43] Meyer, P.A; Yan, J.A, A propos des distributions sur l’espace de Wiener, () · Zbl 0632.60035
[44] Meyer, P.A; Yan, J.A, Distributions sur l’espace de Wiener (suite), () · Zbl 0743.60039
[45] Nelson, E, Probability theory and Euclidean quantum field theory, ()
[46] Nualart, D; Zakai, M, Generalized Brownian functionals and the solution to a stochastic partial differential equation, J. funct. anal., 84, 279-296, (1989) · Zbl 0682.60046
[47] Potthoff, J, On positive generalized functionals, J. funct. anal., 74, 81-95, (1987) · Zbl 0622.46031
[48] Potthoff, J, Littlewood-Paley theory on Gaussian spaces, Nagoya math. J., 109, 47-61, (1988) · Zbl 0672.42013
[49] Potthoff, J, On Meyer’s equivalence, Nagoya math. J., 111, 99-109, (1988) · Zbl 0629.28011
[50] Potthoff, J; Röckner, M, On the contraction property of energy forms in infinite dimensions, J. funct. anal., 92, 155-165, (1990) · Zbl 0708.46045
[51] Potthoff, J; Streit, L, Invariant states on random and quantum fields: ϕ-bounds and white noise analysis, () · Zbl 0777.60099
[52] Potthoff, J; Streit, L, Generalized Radon-Nikodym derivatives and cameron-martin theory, (1990), preprint · Zbl 0820.46044
[53] Potthoff, J; Yan, J.-A, Some results about test and generalized functionals of white noise, (), BiBoS preprint, 1989
[54] Segal, I.E, Mathematical characterization of the physical vacuum for a linear Bose-Einstein field, Illinois J. math., 6, 500-523, (1962) · Zbl 0106.42804
[55] Segal, I.E, The complex-wave representation of the free boson field, () · Zbl 0471.22024
[56] Shieh, N.-R; Yokoi, Y, Positivity of Donsker’s delta function, (), preprint, 1989 · Zbl 0817.60044
[57] Simon, B, The P(φ)2 Euclidean (quantum) field theory, (1974), Princeton Univ. Press Princeton, NJ
[58] {\scL. Streit and T. Hida}, White noise analysis and its application to Feynman integral, “Lecture Notes in Math.,” Vol. 1033, pp. 219-226, Springer-Verlag, New York/Berlin. · Zbl 0536.60073
[59] Streit, L; Hida, T, Generalized Brownian functionals and the Feynman integal, Stochastic process. appl., 16, 55-69, (1983) · Zbl 0575.60039
[60] Sugita, H, Sobolev spaces of Wiener functionals and Malliavin’s calculus, J. math. Kyoto univ., 25, 31-48, (1985) · Zbl 0581.46026
[61] Sugita, H, Positive generalized Wiener functionals and potential theory over abstract Wiener spaces, Osaka J. math., 25, 665-696, (1988) · Zbl 0737.46038
[62] Titchmarsh, E.C, The theory of functions, (1939), Oxford Univ. Press Oxford · Zbl 0022.14602
[63] Watanabe, S, Malliavin’s calculus in terms of generalized Wiener functionals, () · Zbl 0512.60024
[64] Yokoi, Y, Positive generalized functionals, Hiroshima math. J., 20, 137-157, (1990) · Zbl 0714.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.