A latent class unfolding model for analyzing single stimulus preference ratings. (English) Zbl 0826.62098

Summary: A multidimensional unfolding model is developed that assumes that the subjects can be clustered into a small number of homogeneous groups or classes. The subjects that belong to the same group are represented by a single ideal point. Since it is not known in advance to which group or class a subject belongs, a mixture distribution model is formulated that can be considered as a latent class model for continuous single stimulus preference ratings. A GEM algorithm is described for estimating the parameters in the model. The \(M\)-step of the algorithm is based on a majorization procedure for updating the estimates of the spatial model parameters. A strategy for selecting the appropriate number of classes and the appropriate number of dimensions is proposed and fully illustrated on some artificial data. The latent class unfolding model is applied to political science data concerning party preferences from members of the Dutch Parliament. Finally, some possible extensions of the model are discussed.


62P15 Applications of statistics to psychology
91C15 One- and multidimensional scaling in the social and behavioral sciences
62P25 Applications of statistics to social sciences


Full Text: DOI


[1] Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters.Psychometrika, 45, 3–24. · Zbl 0478.62050
[2] Coombs, C.H. (1964).A theory of data. New York: Wiley.
[3] de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. R. Barra, F. Brodeau, G. Romier, & B. Van Cutsem (Eds.),Recent developments in statistics (pp. 133–145). Amsterdam: North-Holland.
[4] de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling.Journal of Classification, 5, 163–180. · Zbl 0692.62056
[5] de Leeuw, J., & Heiser, W. (1977). Convergence of correction-matrix algorithms for multidimensional scaling. In J. C. Lingoes (Ed.),Geometric representations of relational data (pp. 735–752). Ann Arbor, MI: Mathesis Press.
[6] de Leeuw, J., & Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate Analysis-V (pp. 501–522). Amsterdam: North-Holland. · Zbl 0468.62054
[7] Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38. · Zbl 0364.62022
[8] De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In M. Schader & W. Gaul (Eds.),Knowledge, data and computer-assisted decisions (pp. 103–113). Berlin: Springer-Verlag.
[9] De Soete, G. (1992). Using latent class analysis in categorization research. In I. Van Mechelen, J. Hampton, R. Michalski, & P. Theuns (Eds.),Categories and concepts: Theoretical views and inductive data analysis (pp. 309–330). London: Academic Press.
[10] De Soete, G., & DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data.Journal of Classification, 8, 45–63. · Zbl 0725.62058
[11] De Soete, G., & Winsberg, S. (1993a). A latent class vector model for preference ratings.Journal of Classification, 10, 195–218. · Zbl 0800.62751
[12] De Soete, G., & Winsberg, S. (1993b). A Thurstonian pairwise choice model with univariate and multivariate spline transformations.Psychometrika, 58, 233–256. · Zbl 0775.62317
[13] Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis and latent profile analysis.Psychometrika, 24, 229–252. · Zbl 0117.15001
[14] Heiser, W. J. (1981).Unfolding analysis of proximity data. Unpublished doctoral dissertation, University of Leiden, The Netherlands.
[15] Heiser, W. J. (1987). The unfolding technique. In P. Legendre & L. Legendre (Eds.),Developments in numerical ecology (pp. 189–221). Berlin: Springer-Verlag.
[16] Heiser, W. J. (1989). Order invariant unfolding analysis under smoothness restrictions. In G. De Soete, H. Feger, & K. C. Klauer (Eds.),New developments in psychological choice modeling (pp. 3–31). Amsterdam: North-Holland.
[17] Heiser, W. J. (1991a). A generalized majorization method for least squares multidimensional scaling of pseudodistances that may be negative.Psychometrika, 56, 7–27. · Zbl 0726.92032
[18] Heiser, W. J. (1991b).Clustering of variables to optimize the fit of a low dimensional Euclidean model. Paper presented at the 3rd meeting of the International Federation of Classification Societies, Edinburgh, Scotland.
[19] Heiser, W. J., & Meulman, J. (1983). Constrained multidimensional scaling, including confirmation.Applied Psychological Measurement, 22, 139–167.
[20] Hope, A. C. (1968). A simplified Monte Carlo significance test procedure.Journal of the Royal Statistical Society, Series B, 30, 582–598. · Zbl 0187.15901
[21] Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–27. · Zbl 0123.36803
[22] Kruskal, J. B., Young, F. W., & Seery, J. B. (1973).How to use KYST, a very flexible program to do multidimensional scaling and unfolding (Technical Report). Murray Hill, NJ: Bell Laboratories.
[23] Lazarsfeld, P. F., & Henry, R. W. (1968).Latent structure analysis. New York: Houghton Mifflin. · Zbl 0182.52201
[24] McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture.Applied Statistics, 36, 318–324.
[25] McLachlan, G. J., & Basford, K. E. (1988).Mixture models. New York: Marcel Dekker. · Zbl 0697.62050
[26] Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, MA: Addison-Wesley. · Zbl 0186.53701
[27] Meulman, J. J., & Verboon, P. (1993). Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables.Psychometrika, 58, 7–35. · Zbl 0775.62001
[28] Takane, Y. (1976). A statistical procedure for the latent profile model.Japanese Psychological Research, 18, 82–90.
[29] Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985).Statistical analysis of finite mixture distributions. Chichester: Wiley. · Zbl 0646.62013
[30] Wegman, E. J. (1972). Nonparametric probability density estimation.Technometrics, 14, 533–546. · Zbl 0243.62028
[31] Winsberg, S., & De Soete, G. (1993). A latent class approach to fitting the weighted Euclidean model, CLASCAL.Psychometrika, 58, 315–330. · Zbl 04513974
[32] Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis.Multivariate Behavioral Research, 5, 329–350.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.