×

Spectral element methods for large scale parallel Navier-Stokes calculations. (English) Zbl 0826.76060

Summary: We analyze the computational complexity of a recently developed two-level iteration scheme for spectral element solution of the time-dependent incompressible Navier-Stokes equations in complex domains. We present several algorithmic advances which significantly enhance the scalability of this approach, including: implementation of an advanced combine operation for degrees-of-freedom on subdomain edges, parallel solution of the (fine-grained) coarse-grid problem, and implementation of local low- order finite element preconditioners for the find-grid problem. Timings on the 512 node Intel Delta machine show that the combined improvements lead to a fourfold reduction in Navier-Stokes solution time for the particular case of a three-dimensional boundary layer calculation consisting of one million degrees-of-freedom.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Maday, Y.; Patera, A. T.; Rønquist, E. M., An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow, J. Sci. Comput., 5, 4, 263 (1990) · Zbl 0724.76070
[2] Maday, Y.; Patera, A. T., Spectral element methods for the Navier-Stokes equations, (Noor, A. K., State of the Art Surveys in Computational Mechanics (1989), ASME: ASME France), 71-143
[3] Bernardi, C.; Maday, Y.; Metivet, B., Spectral approximation of the periodic-nonperiodic Navier-Stokes equations, Numer. Math., 51, 655-700 (1987) · Zbl 0583.65085
[4] Maday, Y.; Meiron, D.; Patera, A. T.; Rønquist, E. M., Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations, SIAM J. Sci. Stat. Comput., 14, 2, 310 (1993) · Zbl 0769.76047
[5] Rønquist, E. M., A domain decomposition method for elliptic boundary value problems: application to unsteady incompessible fluid flow, (Chan, T. F.; Keyes, D. E.; Meurant, G. A.; Scroggs, J. S.; Voigt, R. G., 5th Conf. on Domain Decomposition Methods for Partial Differential Equations (1991), SIAM: SIAM New York) · Zbl 0767.76056
[6] Fox, G.; Johnson, M.; Lyzenga, G.; Otto, S.; Salmon, J.; Walker, D., (Solving Problems on Concurrent Processors. Volume 1: General Techniques and Regular Problems (1988), Prentice Hall: Prentice Hall Philadelphia)
[7] Fischer, P. F.; Patera, A. T., Parallel spectral element solution of the Stokes problem, J. Comput. Phys., 92 (1991)
[8] Fischer, P. F.; Patera, A. T., Parallel spectral element methods for the incompressible Navier—Stokes equations, (Kane, J. H.; Carlson, A. D., Solution of Super Large Problems in Computational Mechanics (1989), Plenum: Plenum Englewood Cliffs, NJ)
[9] Fischer, P. F., Parallel domain decomposition for incompressible fluid dynamics, (Quarteroni, A., 6th Conf. on Domain Decomposition Methods in Science and Engineering (1994), AMS: AMS New York) · Zbl 0796.76065
[10] Gropp, W. D.; Keyes, D. E., Domain decomposition with local mesh refinement, SIAM J. Sci. Statist. Comput., 13 (1992) · Zbl 0756.65045
[11] Orszag, S. A., J. Comput. Phys., 37, 70 (1980)
[12] Demaret, P.; Deville, M. O., Chebyshev collocation solutions of the Navier—Stokes equations using multi-domain decomposition and finite element peconditioning, J. Comput. Phys., 95 (1991) · Zbl 0726.76066
[13] Deville, M. O.; Mund, E. H., Fourier analysis of finite element preconditioned collocation schemes, SIAM J. Sci. Statist. Comput., 13 (1992) · Zbl 0785.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.